Impact of Macroeconomic News Surprises on
Interest Rate Swap Spreads under Differing Economic Conditions

Victor Fang
Department of Accounting and Finance
Monash University

Chien-Ting Lin
National Chiao Tung University
Taiwan

Phoon Kok Fai*
Lee Kong Chian School of Business
Singapore Management University

Abstract

This study examines the response of Australian interest rate swap spreads to the arrival of macroeconomic news during economic expansion and contraction. We find the degree that news surprises impact on swap spread depends largely on the state of the economy. Unexpected inflation rate is the only news release that has significant impact on swap spreads across all maturities during contractions and remains the important news announcement throughout the business cycle, while unanticipated unemployment rate tends to be more relevant for the 10-year swap and the unanticipated change in money supply tends to be more relevant for 4-and 7-year swaps during expansions. We also find that shocks from these news surprises significantly impact the conditional volatility of the swap spread change during both economic expansion and contraction. The macroeconomic shocks in general are negatively related to the conditional volatility of the swap spread change, suggesting that news worthy announcements tend to reduce uncertainty on the news announcement days in the swap market during both economic expansion and contraction.

Keywords: Interest-rate swap spreads, macroeconomic news, business cycles, probability of default.
JEL Classification: G11, G13, G14

* Phoon Kok Fai, Lee Kong Chian School of Business, Singapore Management University, 50 Stamford Road #04-01, Singapore 178899. Phone: +65 68280146, fax: +65 68280427, e-mail: kfphoon@smu.edu.sg
Impact of Macroeconomic News Surprises on
Interest Rate Swap Spreads under Differing Economic Conditions

1. Introduction

Macroeconomic news plays an essential role in financial markets by revealing new information about the fundamentals of the economy. Periodic news announcements such as the unemployment rate and consumer price index (CPI) are therefore closely watched by market participants who respond quickly and accordingly to unexpected elements of the news. These news surprises therefore form an important part of the price discovery process in financial assets. More importantly, the concept of market efficiency is closely related to the reaction of asset returns to news announcements. Analyzing the effects of news shocks on asset returns might shed some light on market efficiency.

An extensive literature examining the impact of macroeconomic news surprises on financial assets has been documented, mostly on bonds, stocks, and foreign exchange. For example, Fleming and Remolona (1997), Bollerslev et al. (2000), Furfine (2001), Balduzzi et al. (2001), and Green (2004) find that news surprises from GDP growth, inflation rate, unemployment rate, or consumer confidence are significantly related to changes in Treasury yields especially around the time of the announcements. Similarly, Chen et al. (1986), Flannery and Protopapadakis (2002), Bomfim (2003), and Brenner et al. (2005) report that the same economic surprises affect stock prices albeit through a more complicated mechanism due to potential changes in expected cash flows, the discount rate, the risk premium, or a combination of these three pricing factors. In addition, Almeida et al. (1998), Anderson et al. (1998), Anderson et al. (2003), and Simpson et al. (2005) show that announcements related to interest rate and inflation have significant impact on the exchange rate.
In addition, a number of empirical studies suggest that macroeconomic fundamentals play an important role in determining credit spread dynamics. For examples, Jaffee (1975) and Fama and French (1989) show that credit spreads (the difference between corporate bond yield and Treasury bond yield with an equivalent maturity) are significantly related to macroeconomic conditions and widen during recession periods. Ewing (2003) further shows that the default risk premium is relatively higher during recessionary conditions. Wilson (1997a, b), Ramchander et al. (2003, 2005) and Duffie et al. (2007) show that macroeconomic fundamentals have an impact on default rates or yield spread changes. Korajczyk and Levy (2003) find that macroeconomic conditions account for 12% to 51% of the variation in firms’ leverage between 1984 and 1998, and Collin-Dufresne et al. (2001) and Elton et al. (2001) find that firms’ leverage has a significant explanatory power for yield spread changes. A recent study by Tang and Yan (2006) show that firm characteristics have significant effects on credit spreads and these effects vary with economic conditions.

Little empirical work has been done to examine the impact of macroeconomic variables on swap spreads outside U.S. In this study, we attempt to examine the effects of macroeconomic fundamentals on swap spreads under different economic conditions. Specifically, our study addresses the following sets of questions. First, how do unanticipated macroeconomic news announcements impact on the Australian dollar interest rate swap spreads? Second, do these unanticipated macroeconomic announcements affect swap spreads differently across different economic conditions? Third, are these influences consistent with existing theories on interest rate determination? The swap spread is the difference between the fixed rate of a plain-vanilla swap and the yield of a government bond of similar maturity. Since an interest rate swap is an OTC derivative and is not exchange traded, it does not enjoy a payment guarantee by a clearing organization or exchange. Consequently, the pricing of swaps and the corresponding swap spreads reflect credit risk across different maturities. Changes in the swap spreads due to news surprises, the unexpected component of the news announcements, should therefore contain new
information about default risk and the overall credit worthiness of the Australian corporate
sector in addition to interest rate risk.

To conduct empirical analysis on the effect of news announcements, we examine news
of money supply growth, unemployment rate and consumer price index (CPI). We choose these
macroeconomic announcements because they are the most closely watched economic indicators
and are well known to offer insight into the intrinsic health of the economy, the future direction
of interest rates, and the performance of financial markets. A broad consensus has also been
reached that only a small number of macroeconomic factors have a significant impact on pricing
and return. For interest rate swaps in particular, Fornari (2004) finds that only six
macroeconomic variables are influential on US implied volatilities that were extracted from
swaption prices – namely US non-farm payrolls, the US Institute for Supply Management (ISM)
index, jobless claims, the Chicago Purchasing Managers (CPM) index, durable goods orders and
retail sales announcements. We restrict our empirical analysis to the three aforementioned
announcements, because the remaining news announcements are not available in Australia, and
besides, these tend to provide similar information on the economy.

Besides being the first study outside U.S., to our knowledge, to investigate the impact
of news announcements on the Australian swap market, we introduce a state contingent
framework to examine whether these news announcements carry the same influence during
periods of economic expansion and contraction. A rise in inflation rate during expansion, for
example, may carry more weight than an increase in money supply growth because Central
Bank may need to respond to the rising inflation by raising interest rate whereas the same rise of
inflation rate may have less effect on interest rate during contractions. One of the aims in this
study is therefore to extend the existing literature by examining which news announcements
play a dominant role in providing information during each phase of the business cycles.

The state contingent framework also allows us to investigate the interaction of the risk
factors where they may vary across different phase of the business cycles. As evidenced by
Boyd et al. (2005) that information provided by the news arrivals may be interpreted differently
depending on the state of the economy.1 They find that stock market is more responsive to rising unemployment news during expansions but not during contractions. For example, a negative macroeconomic surprise related to an unexpected rise in unemployment rate during an expansion may lower market expectations on future economic activities that lead to a rise in the probability of default on private sector debt. At the same time, the expected decline in the economic activities may push interest rate lower, thereby producing a counter effect. Determining which macroeconomic variable is the dominant effect could depend on the state of the economy.

In addition, using an exponential generalized autoregressive conditional heteroscedasticity (EGARCH) specification in our analysis, we address whether the macroeconomic surprises (positive and negative shocks) have an asymmetric effect on the conditional volatility of the swap spreads within each state of the economy and the macroeconomic shocks remain persistent during both economic growth and slowdowns. Finally, unlike earlier studies that only identify surprise arrivals, our study takes into account both the direction and size of the unexpected component of a news announcement, an improvement that we believe will better capture the impact of news surprises.

We find that over the full sample period, news surprise from CPI is the only significant news announcement affecting the interest rate swap spread change across all maturities. That is, a lower (higher) than expected inflation is related to an increase (decrease) in the swap spreads. However, when we decompose the full sample period into periods of expansion and contraction, unanticipated news on money supply (on 4- and 7-year swap spreads) and unemployment rate (on 10-year swap spread) are more important during expansions while unexpected inflation rate news is the only factor that has an impact on swap spreads across all maturities during contractions.

1 Boyd et al. (2005) examine only the unemployment rate news announcements compared with 3 news announcements in this study.
Within each phase of the business cycles, we further find that the EGARCH modeling has clearly captured the characteristics of swap spread volatility. The conditional volatility of swap spreads exhibits volatility clustering behavior across all maturities (measured by β_1). The asymmetric effect (measured by β_2) is not statistically significant for all sample periods. Looking at the effects of macroeconomic announcements on the conditional volatility of swap spreads, it appears that shocks from CPI are the only shocks that are persistent during both expansions and contractions. However, these shocks are found to reduce conditional volatility.

The rest of the paper is structured as follows. Section 2 describes and provides summary statistics of the swap spread, macroeconomic news announcements and business cycles. Section 3 discusses the methodologies used to examine the impact of the macroeconomic news announcements. Section 4 reports the results of our empirical tests. The final section concludes the paper.

2. Data and Summary Statistics

For the 2, 3, 4, 5, 7 and 10-year interest swap rates, we use the daily closing mid-rates from Datastream over the period from January 3, 1995 to December 31, 2004. The Treasury bond yields of corresponding maturities are obtained from the Reserve bank of Australia (RBA). Swap spreads for the 6 maturities are then calculated by subtracting the swap rates from the Treasury bond yields of the same maturity, giving a total sample size of 2533 observations for each swap maturity.

Table 1 provides some descriptive statistics for the swap spreads. It shows that the average swap spread rises as the maturity of the swap increases, capturing the risk premium embedded in the swap rates. The volatility of the swap spread however appears to be fairly constant across all maturities. Across all maturities, the skewness and the kurtosis of the swap spread show non-normality with some skewness and thin tails. Each of the swap spreads also exhibits non-stationarity based on the Augmented Dickey-Fuller (ADF) test.
We also collect 3 different scheduled macroeconomic announcements over the same 10-year period as the swap spreads. Monthly unemployment rate is compiled by the Australian Bureau of Statistics and released at 11:30am on the second Thursday of the month. Information on money supply growth is announced at 11:30 am on the first Friday of the month by the Reserve Bank of Australia. Finally, quarterly consumer price index is made public at 11:30 am on the last Wednesday of the month following every quarter (for example, March quarter CPI is released on the last Wednesday of April). In order to examine the extent to which these economic fundamentals affect the swap market, it is important to understand and properly model the news information arrivals. Releases of macroeconomic announcements are partly anticipated by the market. At the point of announcement release, the market only reacts to the unexpected component of the news i.e., to the news information that deviates from market expectations. While the announcement of expected component of news information has little influence since it has largely been absorbed in the current price by the market prior to the release.\(^2\)

To measure the news surprises in terms of both direction and magnitude, we subtract the expected values of the macroeconomic news from the actual data of the news releases. Since consensus estimates on the news announcements is not available in Australia where they are collected by Money Market Services (MMS) in the U.S., we follow Connolly and Wang (2003) and build an ARIMA model for each actual news announcement series and use residuals from the model to estimate the unexpected value of each of the macroeconomic information.\(^3\)

Table 2 reports some summary statistic of the macroeconomic announcements and their news surprises. The change in unemployment rate over the sample period averaged -0.031% and ranged from -0.41% to 0.38%. This period is often characterized by high growth especially in the last several years where the unemployment rate stays at a low of 5% to 6%. Money supply

\(^2\) Fama (1971) first formalized the relationship between information arrival and the price formation process by making use of the efficient market hypothesis to assert that asset prices immediately reach an equilibrium state reflecting the arrival of new information in the marketplace.

\(^3\) Previous related studies that also used ARIMA model are Urih and Watchel (1981), Wasserfallen (1988) and Singh (1993).
also grew at an average rate of 0.66% per month although with high variability. The kurtosis of 53.1 reveals heavy tails in the distribution of money supply growth and suggests that it is highly responsive to changes in economic activities. The Australian economy also experienced low inflation environment over the same period in which quarterly inflation rate averaged 0.65% or 2.8% annually. Along with low unemployment rate, inflation rate has also been low and kept within 3% target band established by the Reserve Bank. We also find that during this period of largely good economic fundamentals, the announcement surprises from the three news announcements are on average negative, suggesting that the actual data are better than their respective forecasts.

Since economic activities tend to vary widely over business cycles, one primary question of interest in this study is whether the response of swap spreads to changes in macroeconomic fundamentals varies systematically over time. In other words, could the same information be interpreted differently depending on the state of the economy as the news arrives? To test this hypothesis, we first need to classify the level of economic activities into two different states - expansions and contractions over the business cycles.4

Burns and Mitchell (1946) define business cycles as “a type of fluctuation found in the aggregate economic activity of nations that organise their work mainly in business enterprises: a cycle consists of expansions occurring at the same time in many economic activities followed by similar general recessions, contractions and revivals which merge in the expansion phase of the next cycle; this sequence of changes is recurrent but not periodic…”

Following the description of business cycles, we measure expansions and contractions using the local maxima and minima of the sample path of Gross Domestic Product (GDP), the natural measurement of the level of economic activities.5 With the business cycle reference

4 A business cycle is a graphic representation of the fluctuations in the level of economic activity. The curves of the cycle extend over a number of years, fluctuating through periods of expansions and contractions. These fluctuations are the result of changes in the levels of production, spending and employment. Expansions and contractions were defined as periods of rising and falling levels of economic activity respectively.

5 The chain volume measure of GDP is used.
dates of the Australian Bureau of Statistics (1992), we are able to identify peaks and troughs in Australia’s business cycle from 1990 to 2004. We denote the period from trough to peak as expansions and from peak to trough as contractions. Table 3 shows the dates of turning points in the Australian business cycles together with the duration of each phase of cycle. As expected, we find that there are more expansions (123 months) than contractions (57 months). The Australian economy had particularly been doing well from 1995 to 2000 during which expansions took place for most of the sample period.

3. Empirical Models

In this study, we use a univariate exponential GARCH (EGRACH) that proposed by Nelson (1991) to estimate the return volatility for several reasons. Unlike GARCH, the EGARCH variant imposes no positive constraints on the estimated parameters and explicitly accounts for asymmetry common in asset return volatility, thereby avoiding possible misspecification in the volatility process (Glosten, Jagannathan and Runkle, 1993). In addition, EGARCH allows for a general probability density function (i.e., Generalized Error Distribution, GED), which nests the normal distribution along with several other possible densities.

In order to capture this effect, we include the news variables in both the mean return and the conditional volatility. In our analysis, we first examine the surprise effects of the news arrivals (i.e. MS, UE and CPI) on each swap spread change and its conditional volatility over the full sample period, and then investigate the news surprise effects in each state of economy. To remove any serial correlations and sign bias of $z_{i,t}$ in the estimate, we include a MA(q) process for the mean equation and specify the conditional variance as an EGARCH(1, 1) model for the full sample analysis as follows:

\[
\Delta \text{Swapspr}_t = \alpha_{t,c} + \sum_{k=1}^{q} \alpha_{i,k} \epsilon_{t-k} + \sum_{j=1}^{4} \mu_{j,t} \text{News}_{N,t} + \epsilon_{t,t} \tag{4}
\]
\[
\ln(h_{i,t}) = \beta_1 + \beta_1 \ln(h_{i,t-1}) + \beta_2 z_{i,t-1} + \beta_3 \{[z_{i,t-1} - E(z_{i,t-1})]+\sum_{n=1}^4 y_{i,N} \text{News}_{N,t}\}
\]

where \(\epsilon_{i,t} = z_{i,t}^2 \sqrt{h_{i,t}}\) and \(z_{i,t} \sim N(0,1)\)

Where

\(\Delta \text{Swapsprd}_{i,t} = \) Swap spread change for maturity \(i\) \((i=1, 2, 3, 4, 5\) and 6 for 2, 3, 4, 5, 7 and 10-year swaps respectively)

\(\epsilon_{i,t} = \) The error term is assumed \(\sim (0, h_{i,t})\);

\(h_{i,t} = \) Conditional return volatility for asset \(i\);

\(\text{News}_{N,t} = \) The unexpected component of each macroeconomic announcement \((N = 1, 2 \& 3\) for MS, UE \& CPI respectively) as measured by the difference between the announced figures and the expected value forecasted by an ARIMA model. These monthly and quarterly surprise variables are assigned a value of zero for days without the particular macroeconomic announcement and the magnitude of the surprises for days with announcements.

The coefficient \(\mu_i\) represents the impact of the unexpected component of news on the swap spread \(i\). The coefficient \(\beta_1\) measures the persistence of the conditional variance. The coefficients \(\beta_2\) and \(\beta_3\) represent the impact of the lagged errors on the current conditional variance. A negative \(\beta_2\) indicates that the negative shocks have a larger effect on the conditional variance, i.e. the asymmetric variance effect. Meanwhile, a significant \(\gamma_l\) suggests that the unexpected news \((NEWS_{e,t})\) has a direct impact on the conditional variance on the announcement dates.

To test whether the state of economy changes the news announcement effects, we modify the above equations by multiplying the unexpected news \(NEWS_{N,t}\) with a dummy variable \(D_e\) which denotes the state of the economy. Therefore, the model becomes,

\[
\Delta \text{Swapsprd}_{i,t} = \alpha_{i,c} + \sum_{k=1}^q \alpha_{i,k} \epsilon_{i,t-k} + \sum_{N=1}^4 \delta_{i,N} (D_e * \text{News}_{N,t}) + \epsilon_{i,t}
\]

\[
\ln(h_{i,t}) = \beta_1 + \beta_1 \ln(h_{i,t-1}) + \beta_2 z_{i,t-1} + \beta_3 \{[z_{i,t-1} - E(z_{i,t-1})]+\sum_{n=1}^4 \rho_{i,N} (D_e * \text{News}_{N,t})\}
\]

where \(\epsilon_{i,t} = z_{i,t}^2 \sqrt{h_{i,t}}\) and \(z_{i,t} \sim N(0,1)\)

\[6\] We define separate state of economy dummy variables for contraction and expansion which each takes on a value of unity on the state of economy to which they are assigned and zero otherwise.
The variable \((D_e \ast \text{News}_{N,e})\) denotes the unexpected news under the contraction or expansion state of the economy. The coefficient \(\delta_i\) measures the impact of unexpected news on the swap spread \(i\) under the contraction state or expansion state of economy. While the coefficient \(\rho_i\) measures the impact of unexpected news on the conditional variance under different state of economy. Other variables are as defined in previous Equations.

We estimate the parameters of the above equations for each return asset using the quasi maximum likelihood (QML) procedure described in Bollerslev and Wooldridge (1992). Hence the estimate results are consistent and asymptotically normal and efficient.

4. Empirical Results

Table 4 reports the full sample results of the effects of news surprises on swap spread changes. Among the 3 news announcements, we find that only unexpected inflation rate is significant in explaining the swap spread changes across all maturities except 7-year swap. The inverse relationship between inflation surprises and changes in the swap spread indicates that a higher (lower) than expected inflation rate contributes to a reduction (widening) in the swap spreads. The changes of the swap spread however could come from changes in Treasury yield or changes in swap rate. In other words, a reduction of the swap spread may indicate that the swap rate and Treasury yield move in opposite directions, or in the same direction but different magnitudes. Hence, while a higher than expected inflation rate (indicates a strong economic growth) increases inflation premium on interest rate, it also reduces the default risk premium of the swap rate. The decrease in swap spreads during a higher inflation can be explained by using the option pricing model that proposed by Sorensen and Bollier (1994). If the actual inflation rate is higher than the expected inflation rate (indicates future interest rates are expected to rise), then the option to receive fixed is worth less than the option to pay fixed. In this situation, the expected losses from default on a par swap are not symmetric due to the higher default risk exposure in paying fixed and the lower default risk exposure in receiving fixed. The presence of
this default risk implies that the payer of fixed may not receive the later (increasing) floating payments. Upon default, these higher floating rates will not be paid, thus leaving the payer of fixed in a more disadvantaged situation. A lower fixed rate coupon will compensate for this risk, causing the swap spread to decrease. On the other hand, if the actual inflation rate is lower than expected (indicates future interest rates are expected to fall), the value of the option to receive fixed will be higher than the value of the option to pay fixed. To compensate the potential default risk from the pay-fixed party, the receive-fixed party will require a higher fixed coupon, hence causing the swap spread to increase (see Fang and Muljono, 2003).

Consistent with previous studies (see Urich and Watchel, 1981; Roley, 1983; Ederington and Lee, 1993), the 4- and 7-year swap spread change respond negatively to unexpected change in money supply (with coefficient (\(\mu_{MS} \)) values of -0.0046 and -0.0053 respectively). In their study, Urich and Watchel (1981) find that interest rate levels have a positive relationship with the unexpected change in money supply. They interpret this as an inflationary effect. That is unexpected change in money supply may exert an upward pressure on interest rate as the central bank may engage in an open market operation that tightens the supply of reserves to offset the unexpected change. Hence, causing the swap spread change to decrease (as interest rates are expected to rise). The 10-year swap spread change is the only swap that responds negatively and significantly to unanticipated unemployment rate change (with a coefficient (\(\mu_{UE} \)) value of -0.0306). This suggests that the arrivals of unemployment news have the greatest effect on the long term interest rate swap spread in both economic and statistical sense.

On the conditional volatility of the swap spread changes, the estimates of the lagged volatility coefficient \(\beta_1 \) are highly statistically significant and fall within the range 0.8270 – 0.9792. This implies that the swap spread volatilities are highly persistent across all maturities. The asymmetric impact (as measured by \(\beta_2 \)) is not significant across all swap maturities which means that negative shocks have greater impact on swap market than the positive shocks is not
evident. Finally, the coefficients (β_3) of lagged innovations are positive and statistically significant. In relation to the unanticipated macroeconomic announcements on the conditional volatility of swap spread change, the unanticipated news on inflation rate are found to have negative effects on the conditional volatility of 2-, 3-, 5- and 10-year swap spread change and the unexpected component of the change in money supply also has a significantly negative effect on the 5- and 10-year conditional volatility of swap spread change. Overall, the results seem to be consistent with Ederington and Lee (1996) and Brenner, et al. (2005). Ederington and Lee (1996) show that implied volatility tends to rise in the days before news announcement release. They also find that there is a sharp fall in implied volatilities just after announcements. They argue that the announcement itself helps market to resolve uncertainty. Similarly, Brenner, et al. (2005) find that the conditional return volatility rises before a news announcement and then declines on the day of news release. They attribute this volatility behaviour to mean reversion in short term interest rates that may have caused the impact of announcement shock to decrease for long term bonds.

Further into our analysis, we examine swap spread responses to macroeconomic announcement surprises under different state of economy. Recent studies (see Boyd et al., 2005; and Anderson et al., 2005) suggest that the impact of some macroeconomic variables tends to dominate in periods of economic growth while other variables may be more influential in periods of economic slowdowns. Tables 5 and 6 report the impact of macroeconomic surprises on swap spreads during expansions and contractions respectively.

It is interesting to note that in the economic expansion periods (see Table 5), swap market participants seem to ignore the inflation rate surprises as none of the coefficients of inflation rate surprises (measured by δ_{CPI}) in the mean equation is statistically significant. Other macroeconomic variable like money supply (δ_{MS}) has the same significant effects on swap spread change as discussed in the full sample periods. However, we expect the unemployment shocks have a negative and significant effect on the swap spreads of longer term maturities.
This is because market participants are more concerned with macroeconomic variables (in this instance the unanticipated unemployment figure) that may signal the end of the expansion period and the arrival of the contraction period. As a result, the growth prospect of the private sector may remain stagnant or decline, hence the possibility of the central bank cutting interest rates is highly likely which in turn may affect the swap spreads. Looking at the coefficients of unemployment surprises (measured by δ_{ur}), they are negative but not statistically significant except the 10-year swap spread. These results are consistent with those in Table 4. This suggests that the unemployment surprises have the greatest impact on the long-term swap spreads during the expansion periods.

In contrast to the findings during economic expansions, inflation rate surprises appear to be the most influential news information during contractions. Table 6 shows that swap spread change across all maturities is highly responsive to the CPI surprises. The coefficient δ_{CPI} for inflation rate surprises is negatively significant at the 5 percent level for all swap spread change. One explanation for the significant relationship during contractions is that swap market participants pay more attention to inflation figure because an increase in inflation (indicates future interest rates are expected to increase) is associated with an improving business condition, which in turn improves credit quality and subsequently causes the swap spread to decline. Unlike during expansions however, news surprises on inflation rate are not important on the swap spread changes. Other macroeconomic surprises have no significant impact on swap spread change except the unexpected money supply has a significant effect on 4-year swap spread change.

Finally, results in Panel B of Tables 5 and 6 show that the macroeconomic shocks in general are negatively related to changes in conditional volatility of the swap spreads, suggesting that these news worthy announcements tend to reduce uncertainty on the announcement days in the swap market during expansion and contraction periods. While there are some variations on the effects of the news surprises in different phases of the business cycles,
the impacts appear to be quite consistent. For example, shocks generated from inflation rate announcements are generally negatively significant at the 1 percent level across all maturities in both states of economy. They also tend to dominate other news announcements in the swap market. The shocks from the inflation rate appear to dampen the conditional volatility of the swap spread. On the other hand, the shocks from money supply changes are restricted to the conditional volatility of 10-year swap spread during both expansions and contractions. The effect from the money supply shocks tends to calm down the conditional volatility of the swap spread.

5. Conclusions

This study investigates which macroeconomic news announcements are more influential on the behaviour of Australian interest rate swap spreads and to the extent that they affect the changes in the swap spread during economic expansions and contractions. Using news releases from money supply growth, unemployment rate and inflation rate, we find that news information provided by inflation rate announcements is the only important news throughout the business cycles but most dominant during economic contractions. Whilst the unanticipated unemployment rate tends to be more relevant to 10-year swap and the unanticipated change in money supply tends to be more relevant to 4-and 7-year swaps during expansions. Our findings suggest that market participants pay attention to different macroeconomic news announcements depending on the state of the economy. Information revealed by these news releases therefore may vary in their relevance in each phase of the business cycles.

We also find shocks from these news surprises appear to have significant impact on the conditional volatility of the swap spreads during both economic phases. The macroeconomic shocks in general are negatively related to changes in conditional volatility of the swap spreads, suggesting that these news worthy announcements tend to reduce uncertainty on the news announcement days in the swap market during expansion and contraction periods. While there
are some variations on the effects of the news surprises in different phase of the business cycles, the impacts appear to be quite consistent.
References

18

Wilson TC (1997a) Portfolio Credit Risk (1). Risk 10(9), pp. 111-116

Wilson TC (1997b) Portfolio Credit Risk (2). Risk 10(10), pp. 56-61
Table 1. Descriptive Statistics of the Interest Rate Swap Spreads

This table reports the summary statistics of the daily interest rate swap spreads from January 1995 to December 2004. The critical value for t-ratio at 1% and 5% significant level significant are -3.43 and -2.87 respectively.

<table>
<thead>
<tr>
<th></th>
<th>2-year swap Spreads</th>
<th>3-year swap Spreads</th>
<th>4-year swap Spreads</th>
<th>5-year Swap Spreads</th>
<th>7-year swap Spreads</th>
<th>10-year Swap Spreads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.2495</td>
<td>0.2827</td>
<td>0.3454</td>
<td>0.3502</td>
<td>0.3535</td>
<td>0.3797</td>
</tr>
<tr>
<td>Median</td>
<td>0.2350</td>
<td>0.2950</td>
<td>0.3550</td>
<td>0.3700</td>
<td>0.3670</td>
<td>0.4070</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.1375</td>
<td>0.1501</td>
<td>0.1423</td>
<td>0.1563</td>
<td>0.1521</td>
<td>0.1520</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.1350</td>
<td>-0.4550</td>
<td>-0.0300</td>
<td>-0.4250</td>
<td>-0.0700</td>
<td>-0.0800</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.6100</td>
<td>0.7250</td>
<td>0.9370</td>
<td>1.1100</td>
<td>0.8870</td>
<td>0.9470</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.1280</td>
<td>-0.3676</td>
<td>0.0066</td>
<td>0.3293</td>
<td>0.0302</td>
<td>-0.0053</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>2.2820</td>
<td>2.8081</td>
<td>2.8535</td>
<td>4.1391</td>
<td>2.3828</td>
<td>2.3314</td>
</tr>
<tr>
<td>Observations</td>
<td>2533</td>
<td>2533</td>
<td>2533</td>
<td>2533</td>
<td>2533</td>
<td>2533</td>
</tr>
</tbody>
</table>
Table 2. Descriptive Statistics of the Australian Macroeconomic Announcements and Macroeconomic Surprises

The table reports summary statistics for the monthly and quarterly percentage changes in news release from January 1995 to December 2004. The announcement surprises are the differences between actual macroeconomic value and the forecasted value based on the ARIMA model. */** denote statistical significance at the 1%/5% level.

<table>
<thead>
<tr>
<th></th>
<th>Change in Unemployment Rate (%)</th>
<th>Change in Money Supply growth (%)</th>
<th>Change in Consumer Price Index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Surprise</td>
<td>Actual</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.0305**</td>
<td>-0.0025</td>
<td>0.6586*</td>
</tr>
<tr>
<td>Median</td>
<td>-0.0331</td>
<td>0.0103</td>
<td>0.6927</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.1602</td>
<td>0.1629</td>
<td>1.6129</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.4084</td>
<td>-0.4174</td>
<td>-13.7018</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.3784</td>
<td>0.4134</td>
<td>3.7004</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.1025</td>
<td>-0.0163</td>
<td>-5.8987</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.0129</td>
<td>-0.2937</td>
<td>53.0662</td>
</tr>
<tr>
<td>Observations</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Table 3. Australian Business Cycle

This table reports the Australian business cycle from January 1990 to December 2004. There are 123 expansion and 57 contraction months.

<table>
<thead>
<tr>
<th>Turning Point</th>
<th>Duration in Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peack</td>
</tr>
<tr>
<td>1990.01</td>
<td>1991.06</td>
</tr>
<tr>
<td>1992.12</td>
<td>1993.09</td>
</tr>
<tr>
<td>1997.06</td>
<td>1997.09</td>
</tr>
<tr>
<td>2000.06</td>
<td>2000.12</td>
</tr>
<tr>
<td>2003.12</td>
<td>2004.09</td>
</tr>
</tbody>
</table>
Table 4. The Impact of macroeconomic News Surprises on Australian Interest Rate Swap Spreads: Full Sample

This table reports quasi-maximum likelihood (QML) estimate results (models are estimated using Bollerslev-Wooldridge Heteroskedasticity consistent covariance, and the Marquardt optimization algorithm) for the EGARCH (1,1) model of Equation 1:

\[\Delta \text{Swapsprd}_{t,i} = \alpha_{ic} + \sum_{k=1}^{q} \alpha_{ik} \epsilon_{lt-k} + \sum_{k=1}^{N} \mu_{kN} \text{News}_{N,t} + \epsilon_{lt} \]

\[\ln(h_{it}) = \beta_{lt0} + \beta_{lt1} \ln(h_{lt-1}) + \beta_{lt2} \epsilon_{lt-1} + \beta_{lt3} [\epsilon_{lt-1}] + \sum_{k=1}^{N} \gamma_{kN} \text{News}_{N,t} \]

Where \(\Delta \text{Swapsprd}_{t,i} \) is the change in swap spreads, \(\text{News}_{N,t} \) denotes the surprises of news announcements (\(N \)) which are transformed into daily variables by assigning zero for days without the particular news announcement and the values of the surprises for announcement days. \(q \) is the number of MA lags required to remove serial correlations. \(\epsilon_{lt} \) denotes the error term which is assumed to be \(\sim (0, h_t) \). \(\sqrt{h_t} \) is the conditional volatility of \(\Delta \text{Swapsprd}_{t,i} \). The sample period is from January, 1995 to December, 2004. A *, ** and *** indicate statistical significance at the 1%, 5% and 10% levels respectively.

<table>
<thead>
<tr>
<th>2-year swap spread</th>
<th>3-year swap spread</th>
<th>4-year swap spread</th>
<th>5-year swap spread</th>
<th>7-year swap spread</th>
<th>10-year swap spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
<td>Standard Error</td>
</tr>
<tr>
<td>(\alpha_{c})</td>
<td>0.0002</td>
<td>0.0003</td>
<td>-0.0001</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>(\mu_{MS})</td>
<td>-0.0025</td>
<td>0.0022</td>
<td>-0.0026</td>
<td>0.0016</td>
<td>-0.0046</td>
</tr>
<tr>
<td>(\mu_{UE})</td>
<td>0.0081</td>
<td>0.0167</td>
<td>0.0345</td>
<td>0.0447</td>
<td>-0.0047</td>
</tr>
<tr>
<td>(\mu_{CPI})</td>
<td>-0.0093</td>
<td>0.0015*</td>
<td>-0.009</td>
<td>0.0014*</td>
<td>-0.0077</td>
</tr>
</tbody>
</table>

Panel A: Conditional Mean
Panel B: Conditional Variance

<table>
<thead>
<tr>
<th></th>
<th>β_0</th>
<th>0.9703</th>
<th>0.9706</th>
<th>0.9567</th>
<th>0.827</th>
<th>0.9792</th>
<th>0.8319</th>
<th>0.0342*</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-0.3339</td>
<td>0.0106*</td>
<td>0.9567</td>
<td>0.0146*</td>
<td>0.827</td>
<td>0.0907*</td>
<td>0.9792</td>
<td>0.0077*</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.0035</td>
<td>0.0253</td>
<td>-0.0066</td>
<td>0.0442</td>
<td>-0.0101</td>
<td>0.02688</td>
<td>-0.0384</td>
<td>0.0708</td>
</tr>
<tr>
<td>β_3</td>
<td>0.2103</td>
<td>0.0324*</td>
<td>0.1451</td>
<td>0.0532*</td>
<td>0.2371</td>
<td>0.0558*</td>
<td>0.3405</td>
<td>0.0367*</td>
</tr>
<tr>
<td>γ_{MS}</td>
<td>-0.0421</td>
<td>0.0563</td>
<td>0.0501</td>
<td>0.0692</td>
<td>-0.0401</td>
<td>0.04697</td>
<td>-0.1572</td>
<td>0.0945***</td>
</tr>
<tr>
<td>γ_{UE}</td>
<td>-0.5406</td>
<td>0.8471</td>
<td>2.2499</td>
<td>2.2269</td>
<td>0.1443</td>
<td>0.9756</td>
<td>-3.3473</td>
<td>2.2445</td>
</tr>
<tr>
<td>γ_{CPI}</td>
<td>-0.8468</td>
<td>0.2775*</td>
<td>-1.2404</td>
<td>0.3420*</td>
<td>-0.3072</td>
<td>0.2571</td>
<td>-1.4783</td>
<td>0.7722***</td>
</tr>
</tbody>
</table>

*Significance levels: *p < 0.1, **p < 0.05, ***p < 0.01
Table 5. The Impact of macroeconomic News Surprises on Australian Interest Rate Swap Spreads: Expansion Periods

This table reports quasi-maximum likelihood (QML) estimate results (models are estimated using Bollerslev-Wooldridge Heteroskedasticity consistent covariance, and the Marquardt optimization algorithm) for the EGARCH (1,1) model of Equation 2:

\[
\Delta \text{Swapspr} = \alpha_t + \sum_{k=1}^{q} \alpha_k \epsilon_{t-k} + \sum_{n=1}^{N} \delta_{nN} (D_n \ast \text{News}_N) + \epsilon_t \\
\ln(h_{t,t}) = \beta_{1,0} + \beta_{1,1} \ln(h_{t,t-1}) + \beta_{1,2} z_{t,t-1} + \beta_{1,3} \left[\left| z_{t,t-1} \right| - E(\left| z_{t,t-1} \right|) \right] + \sum_{n=1}^{q} \rho_{nN} (D_n \ast \text{News}_N) \\
\text{where } \epsilon_t = z_t \sqrt{h_t} \text{ and } z_t \sim N(0, 1)
\]

Where \(\Delta \text{Swapspr}_{t,j}\) is the change in swap spreads. \(D_{t,j}\) is a dummy variable takes on a value of 1 during expansions and zero otherwise. \(\text{News}_{N,t}\) denotes the surprises of news announcements (N) which are transformed into daily variables by assigning zero for days without the particular news announcement and the values of the surprises for announcement days. \(q\) is the number of MA lags required to remove serial correlations. \(\epsilon_t\) denotes the error term which is assumed to be \(\sim (0, h_t)\). \(\sqrt{h_t}\) is the conditional volatility of \(\Delta \text{Swapspr}_{t,j}\). The sample period is from January, 1995 to December, 2004. A *, ** and *** indicate statistical significance at the 1%, 5% and 10% levels respectively.

<table>
<thead>
<tr>
<th></th>
<th>2-year swap spread</th>
<th>3-year swap spread</th>
<th>4-year swap spread</th>
<th>5-year swap spread</th>
<th>7-year swap spread</th>
<th>10-year swap spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
</tr>
<tr>
<td>(\sigma_c)</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>(\delta_{MS})</td>
<td>-0.0022</td>
<td>0.0028</td>
<td>-0.0039</td>
<td>0.0041</td>
<td>\textbf{-0.0061}</td>
<td>0.0021</td>
</tr>
<tr>
<td>(\delta_{UE})</td>
<td>-0.032</td>
<td>0.0202</td>
<td>0.0347</td>
<td>0.0524</td>
<td>-0.0282</td>
<td>0.0356</td>
</tr>
<tr>
<td>(\delta_{CPI})</td>
<td>-0.008</td>
<td>0.0067</td>
<td>-0.0024</td>
<td>0.0051</td>
<td>-0.0256</td>
<td>0.0206</td>
</tr>
</tbody>
</table>
Table 5. Cont.

<table>
<thead>
<tr>
<th>Panel B: Conditional Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
</tr>
<tr>
<td>(\beta_1)</td>
</tr>
<tr>
<td>(\beta_2)</td>
</tr>
<tr>
<td>(\beta_3)</td>
</tr>
<tr>
<td>(\rho_{MS})</td>
</tr>
<tr>
<td>(\rho_{UE})</td>
</tr>
<tr>
<td>(\rho_{CPI})</td>
</tr>
</tbody>
</table>
Table 6. The Impact of macroeconomic News Surprises on Australian Interest Rate Swap Spreads: Contraction Periods

This table reports quasi-maximum likelihood (QML) estimate results (models are estimated using Bollerslev-Wooldridge Heteroskedasticity consistent covariance, and the Marquardt optimization algorithm) for the EGARCH (1,1) model of Equation 2:

\[
\begin{align*}
\Delta \text{Swapsprd}_{it} &= \alpha_c + \sum_{k=1}^{q} \alpha_k \Delta \text{Swapsprd}_{it-k} + \sum_{N=1}^{4} \delta_{LN} (D_e * \text{News}_{N,t}) + \epsilon_{it} \\
\ln(h_{it}) &= \beta_0 + \beta_1 \ln(h_{it-1}) + \beta_2 z_{it-1} + \beta_3 \left(z_{it-1} - E(z_{it-1}) \right) + \sum_{N=1}^{4} \delta_{LN} (D_e * \text{News}_{N,t}) \\
\text{where } \epsilon_{it} &= z_{it} \sqrt{h_{it}} \text{ and } z_{it} \sim N(0,1)
\end{align*}
\]

Where \(\Delta \text{Swapsprd}_{it} \) is the change in swap spreads. \(D_e \) is a dummy variable takes on a value of 1 during contractions and zero otherwise. \(\text{News}_{N,t} \) denotes the surprises of news announcements (N) which are transformed into daily variables by assigning zero for days without the particular news announcement and the values of the surprises for announcement days. \(q \) is the number of MA lags required to remove serial correlations. \(\epsilon_t \) denotes the error term which is assumed to be \(\sim (0, h_t) \). \(\sqrt{h_t} \) is the conditional volatility of \(\Delta \text{Swapsprd}_{it} \). The sample period is from January, 1995 to December, 2004. A *, ** and *** * indicate statistical significance at the 1%, 5% and 10% levels respectively.

<table>
<thead>
<tr>
<th></th>
<th>2-year swap spread</th>
<th>3-year swap spread</th>
<th>4-year swap spread</th>
<th>5-year swap spread</th>
<th>7-year swap spread</th>
<th>10-year swap spread</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>Coefficient</td>
<td>Standard Error</td>
</tr>
<tr>
<td>Alpha_c</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>Delta_MS</td>
<td>-0.0016</td>
<td>0.0047</td>
<td>0.0007</td>
<td>0.0041</td>
<td>0.0105</td>
<td>0.0051**</td>
</tr>
<tr>
<td>Delta_UW</td>
<td>0.0241</td>
<td>0.0316</td>
<td>0.0243</td>
<td>0.0211</td>
<td>0.0286</td>
<td>0.0192</td>
</tr>
<tr>
<td>Delta_CPI</td>
<td>-0.0098</td>
<td>0.0012*</td>
<td>0.0022*</td>
<td>-0.0065</td>
<td>-0.0052</td>
<td>-0.0026**</td>
</tr>
</tbody>
</table>
Table 6. Cont.

<table>
<thead>
<tr>
<th></th>
<th>Panel B: Conditional Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>-0.4386 0.1164* -0.2684 0.1400*** -0.3619 0.1172* -2.1139 0.8304** -0.2433 0.0624* -1.4371 0.2870*</td>
</tr>
<tr>
<td>β_1</td>
<td>0.9601 0.0149* 0.9728 0.0167* 0.9644 0.0145* 0.7185 0.1323* 0.9768 0.0076* 0.8399 0.0368*</td>
</tr>
<tr>
<td>β_2</td>
<td>0.001 0.0269 0.0021 0.0548 -0.01 0.0261 -0.0953 0.0837 0.0232 0.0266 -0.0579 0.0517</td>
</tr>
<tr>
<td>β_3</td>
<td>0.2493 0.0347* 0.1468 0.0565* 0.2044 0.0543* 0.4894 0.0512* 0.1451 0.0372* 0.5208 0.0698*</td>
</tr>
<tr>
<td>ρ_{MS}</td>
<td>-0.0728 0.2916 0.0407 0.3154 -0.0302 0.4735 -0.6556 0.3566*** 0.2416 0.2461 -1.0446 0.3650*</td>
</tr>
<tr>
<td>ρ_{UE}</td>
<td>-1.6225 2.4772 -3.4311 2.5848 -0.9855 4.7043 -4.997 3.7028 -3.7345 1.8632** -4.9003 2.6643***</td>
</tr>
<tr>
<td>ρ_{CPI}</td>
<td>-0.521 0.2551** -1.0711 0.2593* -0.825 0.2934* -1.1029 0.3669* -0.5112 0.2438** -1.3955 0.2765*</td>
</tr>
</tbody>
</table>