Need Singapore Fear Floating? A DSGE-VAR Approach

Hwee Kwan Chow & Paul D. McNells
December 2010

Paper No. 29 -2010
Need Singapore Fear Floating? A DSGE-VAR Approach

Hwee Kwan Chow* and Paul D. McNelis†

December 10, 2010

Abstract

This paper uses a DSGE-VAR model to examine the managed exchange-rate system at work in Singapore and asks if the country has any reason to fear floating the exchange rate with a Taylor rule inflation-targeting mechanism that uses the short term interest rate instead of the exchange rate as the benchmark monetary policy instrument. Our simulation results show that the use of a more flexible exchange rate system will reduce volatility in inflation and investment but consumption volatility will increase. Overall, there are neither significant welfare gains or losses in the regime shift. Given the highly open and trade dependent nature of the Singapore economy where the policy preference is for exchange rate stability, there is no impetus to abandon the present monetary regime.

JEL Classification: E52, E62, F41

1 Introduction

Should Singapore fear floating its exchange rate with a Taylor rule inflation-targeting mechanism? Calvo and Reinhart (2002) noted that many emerging markets retain a preference for a managed float with much less flexibility than is commonly assumed by official exchange-rate classification schemes. Lack of credibility of the monetary authority or liability dollarization, they note, are major reasons emerging market countries would avoid floating. However, there are other reasons which may be more relevant for a small, highly open and fast growing economy such as Singapore.

Reflecting the small open nature of its economy, Singapore has adopted an exchange rate centered monetary policy framework since 1981. Given the open-economy trilemma, monetary policy can only achieve fully two of the following three dimensions: monetary policy independence, fixed exchange rates, and

*School of Economics, Singapore Management University, Singapore. Email: hk-chow@smu.edu.sg
†Department of Finance, Graduate School of Business Administration, Fordham University, New York 10019. Email: mcnelis@fordham.edu
open capital accounts. As a major financial centre, Singapore has chosen free capital mobility. Hence, it can only choose to target either the exchange rate or one monetary variable, but not both. The Monetary Authority of Singapore (MAS) has chosen to use the exchange rate as opposed to the more conventional benchmark policy interest rate as its policy operating tool since the early 1980s (MAS, 2000).

This is not surprising as the highly open and trade-dependent nature of the economy implies that the exchange rate is the most effective tool for controlling inflation. Singapore is highly dependent on external demand which constitutes three quarters of aggregate demand. Moreover, domestic consumption has a high import content — out of every Singapore dollar spent in Singapore, about fifty cents go to imports. Being a price-taker in international markets, it follows that Singapore is highly susceptible to imported inflation. As a result of the exchange rate-centered monetary policy framework and free capital mobility in Singapore, domestic short-term interest rates are significantly determined by foreign interest rates.

The Monetary Authority of Singapore (MAS) adopts an intermediate exchange rate regime by targeting the Singapore dollar under a basket-band-crawl (BBC) system (Khor et al, 2004; Williamson, 1999). Under this managed float system, the Singapore dollar is related to a trade-weighted basket (termed TWI) of currencies of its major trading partners and competitors. \(^1\) The prescribed policy band is centered at the target exchange rate for the TWI which is reflective of the long-run equilibrium exchange rate and the band is allowed to crawl over time to keep it in line with Singapore’s long-term economic fundamentals. \(^2\) The Singapore dollar is allowed to float within the band. The MAS avoids intervening within the band except to prevent unwarranted volatility in the TWI. However, when the TWI approaches or exceeds the boundaries of the policy band, the MAS may carry out intervention operations in order to “lean against the wind” and defend the band.

In its semiannual monetary policy cycle, the MAS would announce the exchange rate policy stance through a Monetary Policy Statement. Apart from changes to the crawl in the central parity, there could be a re-centering of the policy band. Another form of adjustment is through changing the width of the band of fluctuations. Essentially, the exchange rate is used as an intermediate monetary policy instrument to achieve the primary objective of non-inflationary growth. In a sense, monetary policy is operated in Singapore as sort of a hybrid between the BBC and inflation targeting. In practice, an adjustable band is used to track the movement of its instrument, while setting its instrument in a way to hit intermediate targets as a means to control inflation and achieve

\(^1\) Neither the component currencies, their assigned weights in the basket, the central rate, nor the band limits are disclosed by the MAS.

\(^2\) The TWI has historically exhibited an upward trend reflecting the strong and improving fundamentals of the Singapore economy over the past decades. However, Singapore’s competitiveness does not seem to have been compromised by the strong dollar policy which has the advantageous effect of pushing the Singapore companies to move up the value chain to focus on higher value-added industries.
non-inflationary growth (Khor et al. 2004). In this way, the BBC system can be operated to achieve the same objectives as inflation targeting.

The managed float system had served Singapore well. With the exception of the Asian crisis period, the MAS has successfully deterred speculators from attacking the domestic currency over the past three decades. Even during the Asian crisis period, the flexibility accorded by the managed float system aided Singapore in escaping from the crisis relatively unscathed. Nevertheless, it can be argued that it is Singapore’s acceptance of market driven depreciations at the wake of and amid the deepening of the crisis that could have deterred currency speculators from engineering over-depreciation in the domestic currency (Yip, 2005). In other words, it is as if the Singapore dollar was on a free float during this period. Of course, Singapore’s substantial amount of foreign reserves played a critical role in deterring speculative attacks. Further, strong economic fundamentals such as consistent fiscal surplus, large current account surplus, maintenance of stable and consistent macroeconomic policies, and a robust financial system are important explanations why Singapore was relatively less affected by the Asian crisis.

In comparison, the Asian crisis has prompted the central banks in East Asia to shift their focus from exchange rate stability to price stability. In particular, the crisis-hit countries like Indonesia, (South) Korea, Philippines and Thailand announced the explicit adoption of inflation targeting and the move towards using interest rates as the key monetary policy instrument. After all, the near pegged exchange rates and its attendant insurance effect exacerbated the boom-bust cycles associated with capital flows, thereby contributing to the crisis (Cossetti et al., 1999). However, unless capital controls are imposed, the open economy trilemma dictates that those countries that adopt inflation targeting would tend to have a freely floating exchange rate regime as well. Should Singapore follow suit?

A key consideration in use of the interest rate variable in its conduct of monetary policy is whether the Singapore economy is interest rate-sensitive. Singapore’s extensive network of international financial and trade linkages with the attendant huge and rapid capital flows and a very liberal policy towards foreign direct investment could result in an economy that is not so responsive to interest rate changes. However, the MAS is still able to exert a degree of control over domestic interest rates by varying the amount of liquidity injections. Figure 1, which depicts the ex post three-month uncovered interest differential between the US and Singapore, reveals that the differentials are quite different from zero and as pointed out by Yip (2003) they are substantially larger in magnitude compared with corresponding figures from Hong Kong. Hence, the fluctuations in the differentials are indicative of some autonomy in the interest rate policy, albeit to a rather limited extent as the exchange rate is managed within a prescribed policy band.

3Some market participants have advocated a move to greater flexibility in the exchange rate to guard against the risk of policymakers misjudging the level of Singapore’s equilibrium exchange rate. However, others have pointed out that increasing flexibility in the TWI would increase the risk of the Singapore dollar overshooting and is thus, destabilizing.
The MAS’ stated objective for monetary policy is "to ensure low inflation as a sound basis for sustained economic growth". Although the policy instrument used is the exchange rate, adjustments in the policy variable are consistent with a policy designed to stabilize inflation and output around their desired target levels. Given this objective, can other instruments like the conventional benchmark interest rate be used? In a monetary VAR analysis of Singapore’s monetary transmission mechanism, Chow (2005) found that the exchange rate is more influential than the interest rate as a source of macroeconomic fluctuations. Nonetheless, the analyses in this study are performed on historical data and therefore reflect past monetary policy actions, in particular the use of the effective exchange rate as the monetary policy instrument. To determine if the conduct of monetary policy would have been more welfare enhancing had the interest rate been used as the policy operating instrument in place of the exchange rate would require counter-factual experiments and simulation analysis. This is the purpose of this paper.

In the next section we lay out a two sector open economy for Singapore with its current exchange-rate regime, with sticky prices and financial frictions. We then discuss the results of Bayesian estimation in the DSGE and DSGE/VAR framework and contrast the results with variance decomposition analysis. Finally we undertake counterfactual simulations with a floating exchange rate system with a Taylor rule for the interest rate to perform welfare comparisons under the two monetary regimes.
2 The Model

2.1 Household Preferences and Endowments

Households own capital, for rental to export-goods producing firms, and supply labor both to both these export and home-goods firms. Capital for rental to the firms depreciates at the rate δ_1. When households accumulate or decumulate capital beyond the steady state level, they pay adjustment costs. The following law of motion is specified for capital, with adjustment costs given by AC^x_t, and ϕ_h, ϕ_x are the adjustment cost parameters.

\begin{equation}
K^x_t = (1 - \delta_1)K^x_{t-1} + I^x_t \tag{1}
\end{equation}

\begin{equation}
AC^x_t = \left(\frac{\phi_x (I^x_t - \delta_1 \bar{K}^x)^2}{2\bar{K}^x} \right) \tag{2}
\end{equation}

We assume that all of investment goods are imported from abroad, and that the price P^f is the relevant price for these goods. The variable \bar{K}^x is the steady state level of the capital stock for export-goods producing firms.

The household consumption at time t, C_t, is a CES bundle of both domestic consumption goods, C^d_t and imported goods, C^f_t.

\begin{equation}
C_t = \left[(1 - \gamma_1)^{\frac{1}{\theta_1}} (C^d_t)^{\frac{\theta_1 - 1}{\theta_1}} + (\gamma_1)^{\frac{1}{\theta_1}} (C^f_t)^{\frac{\theta_1 - 1}{\theta_1}} \right]^{\frac{\theta_1}{\theta_1 - \theta_2}} \tag{3}
\end{equation}

The demand for each component of consumption is a function of the overall consumption index and the price of the respective component relative to the general price level, P:

\begin{equation}
C^d_t = (1 - \gamma_1) \left(\frac{P^d_t}{P_t} \right)^{-\theta_1} C_t \tag{4}
\end{equation}

\begin{equation}
C^f_t = \gamma_1 \left(\frac{P^f_t}{P_t} \right)^{-\theta_1} C_t \tag{5}
\end{equation}

The parameters γ_1 and $(1 - \gamma_1)$ are the relative shares of foreign and domestic goods in the overall consumption index, while θ_1 is the price elasticity of demand for each consumption component.

Domestically-produced goods are both non-traded home goods and export goods (some of which are consumed domestically). The following CES aggregator is used for domestically-produced consumption goods:

\begin{equation}
C^d_t = \left[(1 - \gamma_2)^{\frac{1}{\theta_2}} (C^d_t)^{\frac{\theta_2 - 1}{\theta_2}} + (\gamma_2)^{\frac{1}{\theta_2}} (C^f_t)^{\frac{\theta_2 - 1}{\theta_2}} \right]^{\frac{\theta_2}{\theta_2 - \theta_2}} \tag{6}
\end{equation}
The relative demands for the home non-traded goods and the export goods are given by the following equations:

\[C^h_t = (1 - \gamma_2) \left(\frac{P^h_t}{P^d_t} \right)^{-\theta_2} C^d_t \]
\[C^e_t = \gamma_2 \left(\frac{P^x_t}{P^d_t} \right)^{-\theta_2} C^d_t \]

where the parameters \(\gamma_2 \) and \(1 - \gamma_2 \) are the shares of the export and non-traded goods in domestic production of consumption goods, and \(\theta_2 \) is the price elasticity of demand.

The domestically-produced price index is given by the following CES aggregator:

\[P^d_t = \left[(1 - \gamma_2) \left(\frac{P^h_t}{P^d_t} \right)^{1-\theta_2} + \gamma_2 \left(P^x_t \right)^{1-\theta_2} \right]^{1/1-\theta_2} \]

In the same manner, the overall price index, of course, is a CES function of the price of foreign and domestic consumption goods:

\[P_t = \left[(1 - \gamma_1) \left(P^d_t \right)^{1-\theta_1} + \gamma_1 \left(P^f_t \right)^{1-\theta_1} \right]^{1/1-\theta_1} \]

In addition to buying consumption goods, households put deposits \(M_t \) in the bank and receive dividends from the export and non-traded or home-goods producing firms. Total dividends is given by \(\Pi_t^e \), with \(\Pi_t = \Pi_t^e + \Pi_t^h \). The household pays taxes on labor income \(\tau W_t L_t \) and on consumption \(\tau_c C_t \). The following equation gives the household budget constraint (\(P^d_t \) is the price of imported goods):

\[W_t L_t + (1 + R^m_{t-1}) M_{t-1} + \Pi_t + P^e_t K^e_t \]
\[= P_t C_t (1 + \tau_c) + M_t + \tau W_t L_t + P^f_t I^e_t \]
\[+ P^f_t \left(\frac{\phi_x \left(I^e_t - \delta_2 K^e_t \right)^2}{2K^e_t} \right) \]

We assume that government spending \(G \) is bundled with consumption for utility in CES aggregator. We do this to indicate that there is a reason for government spending to take place, that such spending creates externalities for consumption, in the form of infrastructure, public utilities and other services which enhance household utility:

\[\bar{C}_t = \left[\phi C_t^{-\kappa} + (1 - \phi) G_{t-1}^{-\kappa} \right]^{-\frac{1}{\kappa}} \]

However, household utility does not simply come from the current consumption bundle. Rather, habit persistence applies to this consumption index when
it enters the specific utility function, so that the relevant consumption index is
deflated by the Habit Stock, H_t. The Habit Stock is a function of the lagged
average consumption bundle, raised to the power ρ, the habit persistence parameter:

$$H_t = \bar{C}_{t-1}$$ \hspace{1cm} (13)

Overall utility is a positive function of the consumption bundle and the habit
stock and a negative function of labor:

$$U(C_t/H_{t+\epsilon}, L_t) = Z_t^C \left(\frac{\bar{C}_t/H_t}{1-\eta} \right)^{1-\eta} \gamma \frac{L_t^{1+\omega}}{1+\omega} \hspace{1cm} (14)$$

The parameter η is the relative risk aversion coefficient, while γ is the dis-
utility of labor, and ω the Frisch labor supply elasticity. The variable Z_t^C is
a shock to the utility of consumption and evolves according to the following
process:

$$\ln(Z_t^C) = \rho_C \ln(Z_{t-1}^C) + (1 - \rho_C) \ln(Z_t^C) + \epsilon_{ZC,t} \hspace{1cm} (15)$$

$$\epsilon_{ZC,t} \sim N(0, \sigma^2_{\epsilon_{ZC}}) \hspace{1cm} (16)$$

The household chooses the paths of consumption, labor, deposits, investment
and capital, to maximize the present value of its utility function subject to the
budget constraint and the law of motion for capital. Thus, the objective function
of the household is given by the following expression:

$$\max_{\{C_t, L_t, M_t, I_t^k, K_t^x\}} \sum_{t=0}^{\infty} \beta^t U(C_t/H_{t+1}, L_{t+1}) \hspace{1cm} (17)$$

where the parameter β represents the constant, exogenous discount factor.
This optimization is subject to the three constraints:

$$W_t L_t + (1 + R_{t-1}^m) M_{t-1} + \Pi_t + P_t^{k^x} K_t^x$$

$$= P_t C_t (1 + \tau_c) + M_t + \tau W_t L_t + P_t^{I_t^x}$$

$$+ P_t^{I_t^x} \left(\phi_x \left(I_t^x - \delta_2 K_t^x \right)^2 \right)$$

$$K_t^x = (1 - \delta_2) K_{t-1}^x + I_t^x \hspace{1cm} (18)$$

The variable $P_t^{k^x}$ the return to the export-goods producing firm, while W_t is
the nominal wage rate.

The household optimization is represented by the intertemporal Lagrangean:
\[
\max_{\{C_t, L_t, M_t, I_t^k, K_t^x, I_t^f, K_t^r\}} L = \sum_{i=0}^{\infty} \beta^i \begin{cases}
U(\bar{C}_{t+1}/H_{t+1}, L_{t+1}) \\
P_{t+1} C_{t+1}(1 + \tau^x) + M_{t+1} \\
-(1 + R_m^{n+1})M_{t-1+i} \\
+P_{t+1} f^{1-K_{t+1}^x} \\
\phi_x(I_{t+1} - \delta_1 K_{t+1}^x)^2 \\
+ (\tau - 1)W_{t+1} L_{t+1} + P_{t+1} \\
-P_{t+1} K_{t+1}^x \\
-Q_{t+1} (K_{t+1}^x - I_{t+1} - (1 - \delta_2) K_{t-1+i}^r)
\end{cases}
\]

Note that there are three Lagrange multipliers, one, \(\Lambda_{t+1}\), is the familiar marginal utility of income or wealth, while \(Q_{t+1}^x\), known as Tobin’s Q, is the shadow price of capital for the export-goods sector.

Optimizing the Bellman equation with respect to the decision variables \(C_t, L_t, M_t, I_t^k, K_t^x\) yields the following set of First-Order Conditions for the representative household:

\[
\begin{align*}
\Lambda_t P_t & = \left[\bar{C}_t/H_t\right]^{-\eta} \frac{1}{H_t} (\bar{C}_t)^{1-\psi} \phi(C_t)^{-\psi-1} Z_t^C \\
\gamma L_t^x & = \Lambda_t (1 - \tau^m) W_t \\
\Lambda_t & = \beta \Lambda_{t+1} (1 + R_m^m) \\
Q_t^x & = \beta \Lambda_{t+1} P_{t+1}^{K^x} + \beta \Lambda_{t+1} P_{t+1}^f \left(\phi_x I_{t+1} - \delta_1 K_{t+1}^x\right)^2 + \beta Q_{t+1}^x (1 - \delta_2)Q_{t-1+i}^x \\
I_t^x & = \delta_1 K_{t+1}^x + \frac{K_{t+1}^x}{\phi_x} \left(\frac{Q_{t+1}^x}{\Lambda_t} - P_{t+1}^f\right)
\end{align*}
\]

The first equation, 21, simply tells us that the marginal utility of wealth is equal to the marginal utility of consumption divided by the price level. The second equation, 22, states that the marginal disutility of labor is equal to the after tax marginal utility of consumption provided by the after-tax wage. The third equation is the Keynes-Ramsey rule for optimal saving: the marginal utility of wealth today should be equal to the discounted marginal utility tomorrow, multiplied by the gross rate of return on saving (in the form of deposits).

The equation for Tobin’s Q tells us that the value of capital today is the discounted marginal utility of capital tomorrow, multiplied by the return to capital, in addition to the reduced value of adjustment costs in the future (due to the higher level of capital) and the discounted value of capital tomorrow, net of depreciation.

Finally, the investment equation tells us that investment will be equal to the steady state investment, \(\delta_1 K^x\), when \(Q_{t+1}^x = P_{t+1}^f\). Any increase in Tobin’s Q, relative to the marginal utility of income and the price of investment goods, will trigger increases in investment.
3 Production and Technology

3.1 Home-Goods Firms

The home-good producing firms use the following CES technology:

\[Y^h_t = A^h \left[(1 - \alpha_1) \left(L^h_t \right)^{-\kappa_1} + \alpha_1 \left(K^h_t \right)^{-\kappa_1} \right]^{-\frac{1}{\kappa_1}} \] (26)

The parameter \(\alpha_1 \) is the share of the fixed capital stock in the CES production function, while the coefficient \(\kappa_1 \) is the CES aggregator.

The demand for the home good can be both for domestic consumption, as well for government consumption spending:

\[Y^h_t = C^h_t + G_t \] (27)

We assume that the firm faces a liquidity constraint, it must borrow an amount \(N^h_t \) from banks each quarter to pay a fraction \(\mu_h \) of its wage bill, at the borrowing rate \(R^a_t \). We also assume that the amount of borrowing is subject to a collateral constraint proportional by a factor \(v_1 \) to the total returns on capital:

\[N^h_t = \mu_h W_t L^h_t \] (28)

The total profits (or dividends) of the export firm is given by the following identity:

\[\Pi^h_t = P^h_t Y^h_t - (1 + \mu_h R^a_t) W_t L^h_t \] (29)

Maximizing profits with respect to the use of capital and labor, we have the following first-order conditions for the firm:

\[\frac{\partial Y^h_t}{\partial L^h_t} = (1 + \mu_h R^a_t) \frac{W_t}{P^h_t} \] (30)

In the CES technology, we have the following expressions:

\[\frac{\partial Y^h_t}{\partial L^h_t} = (A^h)^{\kappa_1} (1 - \alpha_1) \left(\frac{Y^h_t}{L^h_t} \right)^{1 + \kappa_1} \] (31)

You can see that with \(\kappa_1 = 0 \), the first order conditions reduce to the Cobb-Douglas marginal productivity conditions.

3.2 Export Goods

The firm producing export goods faces a similar production function:

\[Y^x_t = A^x Z^x \left[(1 - \alpha_2) \left(L^x_t \right)^{-\kappa_2} + \alpha_2 \left(K^x_t \right)^{-\kappa_1} \right]^{-\frac{1}{\kappa_2}} \] (32)

There is an export demand shock \(Z^x \) which follows the autoregressive process:
\[\ln(Z^*_t) = \rho_{Z^*} \ln(Z^*_{t-1}) + (1 - \rho_{Z^*}) \ln(Z^*_{t-1}) + \epsilon_{Z^*,t} \]
\[(33) \]

\[\epsilon_{Z^*,t} \sim N(0, \sigma_{Z^*}^2) \]
\[(34) \]

Foreign export demand is also subject to a stochastic shock, \(\epsilon_{C^*,t} \) at time \(t \).

\[C^*_t = \rho_{C^*} C^*_{t-1} + (1 - \rho_{C^*}) C^*_{t-1} \epsilon_{C^*,t} \]
\[(35) \]

\[\epsilon_{C^*,t} \sim N(0, \sigma_{C^*}^2) \]
\[(36) \]

Under a small open economy setting we also assume that the price of the export good in domestic currency is simply equal to the exchange rate \(S_t \) multiplied by the world export price, \(P^e_t \). We assume that the world export price follows the following exogenous stochastic process:

\[\ln(P^e_t) = \rho_{P^e} \ln(P^e_{t-1}) + (1 - \rho_{P^e}) \ln(P^e_{t-1}) + \epsilon_{P^e*,t} \]
\[(37) \]

\[\epsilon_{P^e*,t} \sim N(0, \sigma_{P^e}^2) \]
\[(38) \]

Total demand for the export good is composed of the local demand (for consumption purposes) as well as the foreign demand:

\[Y^e_t = C^e_t + C^*_t \]

These firms also facing a liquidity constraint for meeting their wage bill:

\[N^e_t = \mu_x W_t L^e_t \]
\[(39) \]

The profits of the export-goods firms are given by the following relation:

\[\Pi^e_t = P^e_t Y^e_t - (1 + \mu_x R^e_t) W_t L^e_t - P^h_t K^e_t \]
\[(40) \]

Optimizing profits implies the following first-order condition for cost minimization:

\[\frac{\partial Y^e_t}{\partial L^e_t} = (1 + \mu_x R^e_t) \frac{W_t}{P^e_t} \]
\[(41) \]

\[\frac{\partial Y^e_t}{\partial K^e_t} = \frac{P^h_t}{P^e_t} \]
\[(42) \]

3.3 Labor Mobility and Capital Immobility

We assume that labor can move between the home-goods and export sectors. This implies the following equality for real labor productivity in each sector:

\[\frac{\partial Y^e_t}{\partial L^e_t} \frac{P^e_t}{(1 + \mu_x R^e_t)} = \frac{\partial Y^h_t}{\partial L^h_t} \frac{P^h_t}{(1 + \mu_h R^h_t)} \]
3.4 Calvo Pricing for Home Goods

The pricing for home-goods firms is different from that of export firms. We assume sticky monopolistically competitive firms in the home-goods market.

Let the marginal cost at time t be given by the following expression:

$$ A_t = \frac{(1 + \mu_1 P^h_t) W_t}{(A^h)^{\kappa_1} (1 - \alpha_1) \left(\frac{Y^h_t}{L_t} \right)^{1+\kappa_1}} \quad (43) $$

In the Calvo price setting world, there are forward-looking price setters and backward looking setters. Assuming at time t a probability of persistence of the price at ξ, with demand for the product from firm j given by $Y^h_j \left(P^h_j \right)^\xi$, the expected marginal cost, in recursive formulation, is presented by the expression for A_t^{num}. The expected demand, for the given price, is given by the variable A_t^{den}. The forward-looking price setting sets the optimal price, P^o_t, so that expected marginal revenue is equal to expected marginal costs.

$$ A_t^{num} = Y^h_t \left(P^h_t \right)^\xi A_t + \beta \xi A_{t+1}^{num} \quad (44) $$

$$ A_t^{den} = Y^h_t \left(P^h_t \right)^\xi + \beta \xi A_{t+1}^{den} \quad (45) $$

$$ P^o_t = \frac{A_t^{num}}{A_t^{den}} + Z^P_t \quad (46) $$

$$ P^h_t = P^h_{t-1} \left(\frac{P_{t-1}}{P_{t-2}} \right) \quad (47) $$

$$ P^h_t = \left[\xi \left(P^h_{t-1} \right)^{1-\zeta} + (1 - \xi) \left(P^o_t \right)^{1-\zeta} \right]^{\frac{1}{1-\zeta}} \quad (48) $$

The backward looking price setters do not keep the price fixed. They will set their price equal to the price at the previous period, P^h_{t-1} multiplied by the previous period’s inflation, $\left(\frac{P_{t-1}}{P_{t-2}} \right)$.

3.5 Importing Firms

Imported goods Y^f are used for both consumption C^f and for investment in the home-goods I^h and I^x respectively.

$$ Y^f = C^f + I^h \quad (49) $$

The importing firms do not produce these goods. However, they have to borrow a fraction μ_3 of the cost of these imported goods in order to bring them to the home market for domestic consumers and investors:

$$ N_t^f = \mu_3 (S_t P^f_t Y^f_t) \quad (50) $$

11
where P^f_t is the world rice of the import goods and S_t is the exchange rate. The domestic cost of the imported goods is given by:

$$P^f_t = (1 + R^m_t) + (1 - \mu_F) \left(S_t P^*_t \right)$$

$$= [1 + \mu_F R^m_t] S_t P^*_t$$

(51)

4 The Financial Sector

Banks lend to all three types of firms:

$$N_t = N^f_t + N^h_t + N^f_t$$

(52)

In addition to these firms, the banks lend to the government B^g_t and receive a risk-free interest rate R_t.

They borrow from foreign financial centers the amount B^f_t and pay a risk premium above the domestic interest rate when such foreign debt exceeds a steady-state level B^f_t:

$$\Phi_t = \max \left\{ 0, \varphi \left[e^{(R^f_t - R^d_t)} - 1 \right] B^f_t \right\}$$

(53)

The banks thus pay a gross interest rate $R^*_t + \Phi_t$ on their outstanding dollar-denominated debt B^f_{t-1} to foreign financial centers.

In addition to paying deposits the interest rate R^m_t we assume that banks are also required to set aside a required ratio of reserves on outstanding deposits, $\phi_M M_t$. The relevant opportunity cost of holding these reserves is of course the amount the banks can earn by holding risk-free government bonds, $\phi_M R_t M_t$.

In addition banks are required to set aside a fraction of capital against their outstanding loans, $\phi_N N_t$. As in the case of the require reserves against deposits, the opportunity cost is given by $\phi_N R_t N_t$.

The gross profit of the banking sector is given by the following balance-sheet identity:

$$\Pi_t^B = (1 + R_{t-1}) B^g_{t-1}$$

$$+ (1 + R^m_{t-1}) N_{t-1}$$

$$- (1 + R^m_{t-1}) + \Phi_{t-1} B^f_{t-1} S_t$$

$$- (1 + R^m_{t-1}) M_{t-1}$$

$$- B^g_t - N_t + S_t B^f_t + M_t$$

$$- \phi_M R_{t-1} M_{t-1} - \phi_M R_{t-1} N_{t-1}$$

(54)

The bank maximizes its the present discounted value of its profits, given by V_t^B, with respect to its its portfolio of assets (loans to the government and firms, B^g_t and N_t) and liabilities (deposits from households and borrowing from foreign financial centers M_t and B^f_t).
\[
\max_{\{B_{t-1}, N_t, M_t, B_t^f\}} V_t^B = \Pi_t^B + \beta V_{t+1}^B
\]

This set of first-order conditions leads to the familiar set of spreads for interest rates, as well as the interest-parity equation:

\[
R_t = R_t^N - \phi_N \\
R_t = R_t^M + \phi_M \\
(1 + R_t)S_t = (1 + R_t^* + \Phi_t + \Phi_t^f B_t^f)S_{t+1}
\]

The foreign interest rate evolves according to the following law of motion:

\[
R_t^* = \rho_R R_t^* - (1 - \rho_R) \bar{R}^* + \epsilon_{R^*,t} + \epsilon_{R^*,t}^s
\]

For Singapore, we allow some flexibility in the exchange rate. Following McCallum (2006), we assume that the Monetary Authority of Singapore following an exchange rate rule:

\[
\ln(S_{t+1}) - \ln(S_t) = \rho_S \ln(S_t) - \ln(S_{t-1}) + (1 - \rho_s) \ln(P_{t+1}) - \ln(P_t) - \bar{\pi} + \epsilon_{S,t} \\
\epsilon_S - N(0, \sigma_s^2)
\]

where $\bar{\pi}$ is the target rate of inflation, ρ_S is the depreciation persistence parameter and ρ_s is the inflation coefficient. This rule implies that in the absence of deviations of inflation from the target rate, the monetary authority will follow a purchasing power parity approach to exchange rate depreciation or appreciation. However if inflation exceeds its target, there will real appreciation. We also allow a stochastic term ϵ_S in the exchange rate depreciation rule, with mean zero and variance σ_s^2.

Given that the exchange rates and the interest rates are determined by the monetary regime, the change in the reserve position of the financial sector evolve according to the following balance-sheet constraint of the financial sector:

\[
\Delta RES_t = -N_t - B_t \\
+ (1 + R_{t-1}^N - \phi_N R_{t-1})N_{t-1} \\
- (1 + R_{t-1}^M + \phi_M R_{t-1})M_{t-1} + M_t \\
+ (1 + R_{t-1})B_{t-1} \\
- (1 + R_{t-1}^* + \Phi_t B_{t-1})S_{t-1} + B_t^f S_t
\]
4.1 Fiscal Policy

The government takes in taxes from the households and engages in spending on traded goods. We assume that spending may be either pro-cyclical or counter-cyclical, depending on the value of ρ_{GY}, that there is smoothing in government consumption, and there is a stochastic component to spending:

$$G_t = (1 - \rho_G)\bar{G} + \rho_G G_{t-1} + (1 - \rho_G)\rho_{GY}(Y_{t-1} - \bar{Y}) + \epsilon_{G,t}$$ \hspace{1cm} (62)

$$\epsilon_{G,t} \sim N(0, \sigma_{G,t}^2)$$ \hspace{1cm} (63)

Given its source of labor and consumption tax revenue, the fiscal borrowing requirement is given by the following identities:

$$TAX_t = \tau W_t L_t + \tau_e P_t C_t$$ \hspace{1cm} (64)

$$B_t = (1 + R_{t-1})B_{t-1}^\rho + P_t^h G_t - TAX_t$$ \hspace{1cm} (65)

5 Foreign Assets and Interest Rates

The aggregate foreign borrowing or asset accumulation evolves through the following identity:

$$S_t B_t^I = [1 + R_{t-1}^* + \Phi_{t-1}]S_{t-1} B_{t-1}^I + P_t^f (C_t^I + I_t^h + I_t^r) - P_t^e (C_t^*)$$ \hspace{1cm} (66)

It should be noted that the risk premium embedded in the accumulation of foreign debt effects closes this open economy model, so that the domestic consumption and foreign debt levels do not become indeterminate. There are other ways to close the open economy model, such as adjustment costs on foreign debt accumulation, or an endogenous discount factor [see Schmitt-Grohé and Uribe (2003)]. We feel that the incorporation of a time-varying endogenous risk premium is a more intuitive way to close this model.

6 Calibrated Parameters and Bayesian Priors

Before turning to Bayesian estimation, we first calibrate the parameters which determine the steady state. Following Christiano, Motto and Rostagno (2007), we calibrate parameters that control the steady state, and estimate with Bayesian methods those parameters which affect the dynamics and stochastic properties of the model. The reason we simply calibrate and do not estimate the first set of parameters is that computation of the steady-state is very time intensive.

The parameters are set for a quarterly model. The discount parameter β is similar to most other models for quarterly data. The habit persistence parameter γ is within range of most models, such as Smets and Wouters (2003). The depreciation rate for capital δ_1 is relatively high. We assume that the capital
in our model is specific to the non-traded sector. Since investment goods in this sector are imported goods, we assume that the depreciation is high, while the adjustment cost parameter ϕ_K would be relatively low.

The ratios of consumption of foreign goods in total consumption basket, γ_1, the share of export-goods consumption in the total domestic consumption basket, γ_2, the tax parameters for labor income and consumption, τ, τ_C all come from national income accounts. The relative risk aversion coefficient, η, the labor supply elasticity, ϖ, and the disutility of labor γ_L are commonly used. We assume a higher intratemporal elasticity between consumption of home and foreign goods in the total consumption index than the elasticity of intratemporal substitution between consumption of export and home goods in the domestic consumption index. Hence, $\theta_1 > \theta_2$.

The financial friction parameters, representing the borrowing needs of the export, home-goods and importing firms, were all set equal at a value of 1. We assume in such a financially developed economy as Singapore that firms in any of the sectors would have easy access to short term credit. The capital coefficient in the export production function, α_2, is set to to replicate the shares of capital and labor in the economy. Finally the banking reserve and lending cost parameters ϕ_M, ϕ_N, are set to replicate observed low spreads in the financial sector.

Table 1: Calibrated Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>θ_1</td>
<td>habit parameter</td>
<td>0.8</td>
</tr>
<tr>
<td>δ_1</td>
<td>capital depreciation</td>
<td>0.02</td>
</tr>
<tr>
<td>ϕ_{K_h}</td>
<td>adjustment cost</td>
<td>0.005</td>
</tr>
<tr>
<td>γ_1</td>
<td>foreign cons. in total cons. index</td>
<td>0.5</td>
</tr>
<tr>
<td>γ_2</td>
<td>con of export good in dom.cons. index</td>
<td>0.3</td>
</tr>
<tr>
<td>η</td>
<td>relative risk aversion parameter</td>
<td>0.3</td>
</tr>
<tr>
<td>ϖ</td>
<td>labor supply elasticity</td>
<td>0.5</td>
</tr>
<tr>
<td>γ_L</td>
<td>disutility of labor</td>
<td>1</td>
</tr>
<tr>
<td>ϕ_C</td>
<td>consumption in CES utility</td>
<td>0.95</td>
</tr>
<tr>
<td>κ</td>
<td>CES utility coefficient</td>
<td>-0.1</td>
</tr>
<tr>
<td>θ_1</td>
<td>intratemporal substitution elasticity, total cons</td>
<td>2.5</td>
</tr>
<tr>
<td>θ_2</td>
<td>intratemporal substitution elasticity, domestic cons</td>
<td>1.5</td>
</tr>
<tr>
<td>τ, τ_C</td>
<td>tax rates on labor income and consumption</td>
<td>0.06, 0.07</td>
</tr>
<tr>
<td>μ_1, μ_2, μ_3</td>
<td>financial friction parameters</td>
<td>1.1, 1</td>
</tr>
<tr>
<td>ζ</td>
<td>substitution elasticity for differentiated goods</td>
<td>6</td>
</tr>
<tr>
<td>κ</td>
<td>CES substitution parameter in production</td>
<td>-0.1</td>
</tr>
<tr>
<td>α_1</td>
<td>capital coefficient in non-traded goods</td>
<td>0.3</td>
</tr>
<tr>
<td>α_2</td>
<td>capital coefficient in traded goods</td>
<td>0.4</td>
</tr>
<tr>
<td>ϕ_M, ϕ_N</td>
<td>deposit and lending costs for banks</td>
<td>0.1, 0.15</td>
</tr>
</tbody>
</table>

Table 2 shows the prior distributions with the means and standard errors as well as values for the infima and suprema of the distributions. We make
use of relatively flat priors for the standard deviations for the volatilities of the
shocks in the model. The coefficients we estimate relate to stochastic process
for government spending, and the persistence coefficient for export demand,
productivity in exports, terms of trade, and the foreign interest rate. We allow
the government spending coefficient with respect to output to be positive or
negative, thus allowing the data to determine if spending is pro or counter-
cyclical.

Table 2:
Bayesian Priors: Parameters and Distributions

<table>
<thead>
<tr>
<th>Volatility Name</th>
<th>Distribution</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Inf</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_G)</td>
<td>Gov. Spending</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
<tr>
<td>(\sigma_{PX})</td>
<td>Terms of Trade</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
<tr>
<td>(\sigma_{R})</td>
<td>For. Interest</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
<tr>
<td>(\sigma_{C})</td>
<td>Exports</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
<tr>
<td>(\sigma_{C})</td>
<td>Consumption</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
<tr>
<td>(\sigma_{S})</td>
<td>Ex. Rate Rule</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
<tr>
<td>(\sigma_{Z})</td>
<td>Export Productivity</td>
<td>Inv. Gamma</td>
<td>.001</td>
<td>2</td>
<td>.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient Name</th>
<th>Distribution</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Inf</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_S)</td>
<td>Lag in Ex. Rate Rule</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.1</td>
</tr>
<tr>
<td>(\rho_T)</td>
<td>Inf Coeff in Ex. Rate Rule</td>
<td>Normal</td>
<td>1</td>
<td>.2</td>
<td>.5</td>
</tr>
<tr>
<td>(\rho_G)</td>
<td>Gov. Spending Lag</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
<tr>
<td>(\rho_{GY})</td>
<td>Gov. Spending to GDP</td>
<td>Normal</td>
<td>0</td>
<td>.1</td>
<td>-.3</td>
</tr>
<tr>
<td>(\rho_{PX})</td>
<td>Terms of Trade</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
<tr>
<td>(\rho_{R})</td>
<td>For. Interest</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
<tr>
<td>(\rho_{C})</td>
<td>Export Demand</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
<tr>
<td>(\rho_C)</td>
<td>Consumption</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
<tr>
<td>(\rho_{Z})</td>
<td>Export Productivity</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Calvo Pricing</td>
<td>Beta</td>
<td>.5</td>
<td>.2</td>
<td>.01</td>
</tr>
</tbody>
</table>

7 Bayesian Estimation Results

We estimate the model for seven stochastic shocks: for government spending,
terms of trade, foreign interest rates, export demand, domestic consumption
demand, the exchange rate rule and export productivity. Bayesian estimation
is carried out for the period 1984-2008 for the following observables: government
spending, export demand, consumption, the price level, the exchange rate, the
terms of trade, and the foreign interest rate. Except for the foreign interest
rate which is in deviations from trend, the data are log first differenced. Then
we take up the results of posterior simulations for impulse response analysis. To
obtain percentage deviations from the steady state, we use the Hodrik-Prescott
filter for real variables and we use a linear detrending filter for the nominal
variables.
We estimate the model for Singapore in pure DSGE framework as well as in a DSGE/VAR framework, following Del Negro, Marco and Frank Schorfheide (2004), Adjemian, Stephane, Matthiew Darracq, and Stephane Moyen (2008), and An, Sungbae and Heedon Kang (2009). We contrast the parameter estimates and volatilities under both frameworks.

7.1 Relative Fit of DSGE and DSGE/VAR Framework

Table 3 pictures the relative fit of the DSGE models relative to the VAR framework. The parameter λ governs the relative weight of the pure DSGE model relative to the hybrid or pure VAR model. The best fit gives $\lambda = 1.323$ by both the Laplace and Harmonic Mean measurements of the Marginal Likelihood. This implies that the VAR (with four lags) accounts for less than 45% of the variation in the data, relative to the pure DSGE model. Overall, the DSGE/VAR is more accurate than the pure DSGE model, and we will make use of the estimates of the DSGE/VAR model for comparative policy analysis.

Table 3: Fit of DSGE Models

<table>
<thead>
<tr>
<th>Specification</th>
<th>Marginal Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laplace</td>
</tr>
<tr>
<td>DSGE</td>
<td>Inf</td>
</tr>
<tr>
<td>DSGE/VAR</td>
<td>1.323</td>
</tr>
</tbody>
</table>

7.2 Volatility and Parameter Estimates

Table 4 pictures the results for Singapore under the pure DSGE and the DSGE/VAR framework for the mean $\lambda = 1.3238$. The table contains the mean of the Bayesian estimates for 200,000 simulations in four blocks. We also show the infimum and supremum of each estimate for a 95% confidence interval.

Overall, Table 4 shows that there is relatively less persistence in the DSGE/VAR model. However, the Calvo parameter is almost twice as high in the DSGE/VAR relative to the pure DSGE model. The Calvo parameter estimates are still much lower than are commonly found in models of the US or UK.

Table 4 also shows that government spending with respect to GDP may be pro or counter-cyclical.

The volatility estimates are lower in the DSGE/VAR model-indicating that the high values for the DSGE model are due to specification error.
Table 4:
Parameter and Volatility Estimates

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>DSGE Mean</th>
<th>DSGE Mean</th>
<th>DSGE VAR Inf</th>
<th>DSGE VAR Sup</th>
<th>VAR Inf</th>
<th>DSGE VAR Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>∞</td>
<td>–</td>
<td>–</td>
<td>1.323</td>
<td>0.987</td>
<td>1.643</td>
</tr>
<tr>
<td>ρs</td>
<td>0.861</td>
<td>0.826</td>
<td>0.901</td>
<td>0.605</td>
<td>0.448</td>
<td>0.772</td>
</tr>
<tr>
<td>ρπ</td>
<td>1.381</td>
<td>1.142</td>
<td>1.619</td>
<td>1.310</td>
<td>0.554</td>
<td>1.775</td>
</tr>
<tr>
<td>ρC</td>
<td>0.748</td>
<td>0.646</td>
<td>0.852</td>
<td>0.508</td>
<td>0.268</td>
<td>0.745</td>
</tr>
<tr>
<td>ρG</td>
<td>0.141</td>
<td>0.038</td>
<td>0.244</td>
<td>0.178</td>
<td>0.032</td>
<td>0.312</td>
</tr>
<tr>
<td>ρGx</td>
<td>-0.005</td>
<td>-0.067</td>
<td>0.052</td>
<td>-0.036</td>
<td>-0.134</td>
<td>0.063</td>
</tr>
<tr>
<td>ρpGx</td>
<td>0.707</td>
<td>0.587</td>
<td>0.834</td>
<td>0.698</td>
<td>0.541</td>
<td>0.863</td>
</tr>
<tr>
<td>ρR</td>
<td>0.918</td>
<td>0.913</td>
<td>0.921</td>
<td>0.773</td>
<td>0.686</td>
<td>0.867</td>
</tr>
<tr>
<td>ρZ</td>
<td>0.704</td>
<td>0.428</td>
<td>0.945</td>
<td>0.506</td>
<td>0.194</td>
<td>0.867</td>
</tr>
<tr>
<td>ρC</td>
<td>0.663</td>
<td>0.560</td>
<td>0.773</td>
<td>0.568</td>
<td>0.385</td>
<td>0.753</td>
</tr>
<tr>
<td>ξ</td>
<td>0.273</td>
<td>0.170</td>
<td>0.363</td>
<td>0.416</td>
<td>0.198</td>
<td>0.662</td>
</tr>
</tbody>
</table>

Volatility

<table>
<thead>
<tr>
<th></th>
<th>DSGE</th>
<th>DSGE</th>
<th>DSGE/VAR</th>
<th>DSGE/VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>σG</td>
<td>0.037</td>
<td>0.033</td>
<td>0.043</td>
<td>0.027</td>
</tr>
<tr>
<td>σS</td>
<td>0.013</td>
<td>0.011</td>
<td>0.015</td>
<td>0.007</td>
</tr>
<tr>
<td>σpGx</td>
<td>0.009</td>
<td>0.007</td>
<td>0.010</td>
<td>0.006</td>
</tr>
<tr>
<td>σR</td>
<td>0.298</td>
<td>0.259</td>
<td>0.339</td>
<td>0.085</td>
</tr>
<tr>
<td>σC</td>
<td>0.018</td>
<td>0.015</td>
<td>0.020</td>
<td>0.011</td>
</tr>
<tr>
<td>σZ</td>
<td>0.022</td>
<td>0.019</td>
<td>0.025</td>
<td>0.011</td>
</tr>
<tr>
<td>σC</td>
<td>0.047</td>
<td>0.041</td>
<td>0.053</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Of course, these volatility estimates tell us nothing about the relative importance of each of the exogenous shocks for key endogenous variables in the model. Table 5 gives the mean variance decomposition of the Bayesian estimation. We see a number of expected results, for example, that the shock to consumption explains more than 40 percent of the variance in consumption in the DSGE/VAR, and 80 percent in the DSGE.

The shocks to export productivity and foreign demand are quite important for both inflation and the exchange rate in both models, explaining almost 70% of the total variation of both variables in the DSGE/VAR model. This is not surprising, in view of the central role exports have played in the growth and development of the Singaporean economy.

The shock to the monetary exchange rate rule accounts for about 20 percent of the variance of inflation and the exchange rate. This reflects the strong linkages, as explained earlier, between exchange rate, import prices and domestic prices in Singapore.

Overall the main sources of volatility in the model are the shocks to export productivity, export demand, and the exchange rate. Consumption shocks only affect consumption and government spending shocks have little influence on the variability of consumption, inflation or the exchange rate. As is typical of a small open economy like Singapore, domestic demand components do not exert a significant leverage on output growth. This is explained by the very large import
leakage. Indeed, the propensity to import goods for domestic production and consumption in Singapore is estimated to be around 0.8 (Peebles and Wilson 2002).

Table 5: Variance Decomposition

<table>
<thead>
<tr>
<th>DSGE Variable</th>
<th>Shock σ_G</th>
<th>σ_S</th>
<th>σ_Px*</th>
<th>σ_R*</th>
<th>σ_C*</th>
<th>σ_Z*</th>
<th>σ_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.007</td>
<td>0.033</td>
<td>0.003</td>
<td>0.006</td>
<td>0.031</td>
<td>0.116</td>
<td>0.804</td>
</tr>
<tr>
<td>4</td>
<td>0.010</td>
<td>0.298</td>
<td>0.053</td>
<td>0.001</td>
<td>0.148</td>
<td>0.484</td>
<td>0.006</td>
</tr>
<tr>
<td>5</td>
<td>0.003</td>
<td>0.666</td>
<td>0.016</td>
<td>0.001</td>
<td>0.056</td>
<td>0.257</td>
<td>0.001</td>
</tr>
</tbody>
</table>

DSGE/VAR:λ = 1.323

<table>
<thead>
<tr>
<th>DSGE Variable</th>
<th>Shock σ_G</th>
<th>σ_S</th>
<th>σ_Px*</th>
<th>σ_R*</th>
<th>σ_C*</th>
<th>σ_Z*</th>
<th>σ_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.023</td>
<td>0.015</td>
<td>0.029</td>
<td>0.001</td>
<td>0.138</td>
<td>0.329</td>
<td>0.464</td>
</tr>
<tr>
<td>4</td>
<td>0.010</td>
<td>0.202</td>
<td>0.091</td>
<td>0.000</td>
<td>0.195</td>
<td>0.500</td>
<td>0.002</td>
</tr>
<tr>
<td>5</td>
<td>0.009</td>
<td>0.215</td>
<td>0.075</td>
<td>0.001</td>
<td>0.188</td>
<td>0.512</td>
<td>0.000</td>
</tr>
</tbody>
</table>

8 Counterfactual Simulations

We analyze one counterfactual monetary regimes for Singapore, a Taylor rule inflation targeting framework.

The Taylor rule takes the following functional form:

\[R_t = \rho_r R_{t-1} + (1-\rho_r)\rho_\pi \hat{\pi}_t + (1-\rho_r)\hat{R} \] \hspace{1cm} (67)

We simulate the counterfactual DSGE model with the policy rule parameters for the Taylor rule given above, taking on the same values as those estimated for the exchange-rate rule, since, of course, we cannot estimate a Taylor rule for Singapore. Hence, \(\rho_r = .861 \), while \(\rho_\pi = 1.38 \). Our rationale is that the monetary authority would behave with the same desire for smoothing of the interest rate as it would for the exchange rate, and would adjust the interest rate at least with the same response to inflation as they did with the exchange rate. Since we are engaging in counteractual simulations for comparative policy evaluation we omit the stochastic terms in the base and counterfactual policy rules.

We simulated each model 1000 times for a sample of 500, and obtained the standard deviations of nominal and real macro variables. We examine the distribution of these variables in order to assess any significant differences in the distribution of these variables.

8.1 Stochastic Simulations: Taylor Rule Inflation Targeting

Figure 2 pictures the kernel estimates of the volatility measures of inflation, the exchange rate and the domestic interest rate under the base scenario of
exchange-rate instruments and the counterfactual Taylor rule inflation targeting. We see that abandoning the exchange rate rule in favor of the interest rate rule leads to a decrease in inflation volatility and increases in both exchange rate volatility and interest rate volatility. In view of the trade dependent nature of the Singapore economy, there is a clear preference for low exchange rate volatility which then favors the exchange-rate rule.

Figure 3 pictures the kernel estimates of consumption, investment, and employment volatility. We see an increase in the volatility of consumption and a reduction in the volatility of investment while volatility in employment remains much the same when we use the interest rate instead of the exchange rate as monetary policy instrument.

Figure 4 pictures the distribution of welfare. We see a huge overlap in the two distributions. While the slight reduction in employment volatility would favor the counterfactual regime, the increased consumption volatility reduces welfare. So the two effects partially offset each other.

To better interpret the differences in the welfare distributions, we calculate the implied consumption compensation required to equalize the welfare of the representative household in the two regimes. This compensation compensation factor, ΔC, takes the following functional form for each simulation experiment:
Figure 2: Consumption, Investment and Employment Volatility Under Base Policy and Counterfactual Taylor Rule
Figure 3: Welfare Distribution Under Base Policy and Counterfactual Taylor Rule

\[\Delta_C = 100 \left[1 - \left(\frac{V_{\text{Counter}} - V_{\text{Base}}}{V^C_{\text{Base}}} + 1 \right)^{\frac{1}{10}} \right] \]

\[V^\text{Base} = \sum_{i=0}^{T} \beta^i U(\tilde{C}_{t+i}, H_{t+i}^{\text{Base}}, L_{t+i}^{\text{Base}}) \]

\[V^\text{Counter} = \sum_{i=0}^{T} \beta^i U(\tilde{C}_{t+i}^{\text{Counter}}, H_{t+i}^{\text{Counter}}, L_{t+i}^{\text{Counter}}) \]

\[V^C_{\text{Base}} = \sum_{i=0}^{T} \beta^i U(\tilde{C}_{t+i}^{\text{Base}}, H_{t+i}^{\text{Base}}) \]

The variables \(V^\text{Base} \) and \(V^\text{Counter} \) are the welfare measures for the base and counterfactual cases, and \(V^C_{\text{Base}} \) is the component of welfare explained by the consumption stream alone. A positive values implies that the household in the counterfactual scenario is worse off and needs a positive consumption compensation to have the same welfare as households in the base scenario. A negative value means that the household is better off in the counterfactual scenario, and would have to have consumption reduced to be equal to the welfare realized in the base scenario.
Figure 4: Consumption Compensation for Equalizing Welfare in the Two Regimes

Figure 5 pictures the distribution of the consumption compensation for each experiment. We see that the consumption compensation for equalizing welfare in the two scenarios can be either positive or negative, with almost equal probability, and the greatest extent of the compensation needed, in the most extreme circumstance, would amount of .8% of a unit of consumption. Thus there are neither significant welfare gains or losses from shifting to a Taylor inflation targeting regime over the current exchange-rate regime.

9 Conclusion

Our Bayesian analysis for Singapore suggests some reasons for the Singaporeans to fear floating. As a highly open economy, greater volatility in the exchange rate and interest rate, through a Taylor rule policy, would lead to much greater volatility in consumption, with a payoff of somewhat reduced volatility in inflation and investment. The overall welfare gain or loss would be trivial.
Given the highly open and trade dependent nature of the Singapore economy, where the policy preference is for exchange rate stability, there is no reason to abandon the present monetary regime. Staying with the current regime better insulates exchange rates and hence, exports from both domestic and foreign sources of volatility.

One further extension of the model would incorporate government spending effects on infrastructure capital for the production of traded and non-traded goods. In this model government spending had direct effects on utility derived from consumption. Given the massive importance of the government in Singaporean development, a more complex specification of government spending dynamics and interaction with domestic and foreign investment would be in order.

References

