Risking Returns: Moving from Public to Private Equity

Jerry Cao
LKC School of Business, Singapore Management University

Aurobindo Ghosh
LKC School of Business and SKBI, Singapore Management University

Jeremy Goh
LKC School of Business, Singapore Management University

July 1, 2012

Acknowledgement: Early version of this paper benefitted hugely from discussions from conference participants at the Econometric Society European Meetings at Barcelona, 2010 and seminar participants at LKCSB and SOE at SMU. We would like to thank Morningstar Corporation’s Principia Mutual Funds and Thomson Financial’s SDC Platinum and Thomson Banker One databases for providing the data for this project. I would also like to thank the Centre for Academic Computing at SMU and Ms. Sun ZhiXiang and Ms. Renee Garcia for providing able research assistance. This project has been partially funded by SMU Office of Research No. 07-C208-SMU-009. Usual disclaimers apply.

Corresponding Author. Tel: +65 6828-0863, Email: aurobindo@smu.edu.sg
Abstract

The notion of risk identifies a project that matches with the risk appetite of an entrepreneur not necessarily the investors. This can explain why entrepreneurs would start up companies but it cannot explain why ex-post the investors continue, given that a diversified portfolio of publicly traded assets could potentially generate similar return with lower risk. We re-evaluate the evidence through performance measures using relative probability distributions of public and private equity funds, and identify the nature of the deviations. In a fixed effect framework, after adjustments, we do not find any substantive difference between public and private equity investments not just in average returns but in higher order moments amenable to more general risk measurement. Using novel graphical and analytic tools using ranks, these results are found to be robust to more general specification that can accommodate for possible quality issues with the data after controlling for size and sequence characteristics of the private and public equity investments.

JEL Classification: G11, G24, C14

Keywords: Private equity premium puzzle, mutual fund returns, private equity returns, venture capital, smooth test, fixed effects models, rank regression, Fractile graphical analysis
1 Introduction and Motivation

Few topics generate more disparate, often irreconcilable, positions as an open discussion on Private Equity\(^1\), an industry with a current $3 trillion worth of assets and more than 2600 firms in the US (according to Private Equity Growth Capital Council\(^2\)). A noticeable development is that more and more public or private pension funds and endowment funds around the world are allocating more assets into private equity. For example, in June 2009, the CalPERS Board decided to increase the target allocation for its Alternative Investment Management (AIM) program, or private equity, from 10 percent to 14 percent, and global fixed income from 19 percent to 20 percent. It reduced global equity (mostly public stocks) from 56 percent to 49 percent and raised its cash target from 0 percent to 2 percent, with its target allocations for real estate and inflation-linked assets unchanged. While migration into private equity has been echoed by many other large institutional investors, many economists remain skeptical of possible agency problems with private equity investment (Beware of Venturing into Private Equity, Phalipou, 2009).\(^3\)

So the $3 trillion dollar question is “Why go to private equity from public equity?”

We herein address the current concerns among investors particularly large ones like endowments, pension funds and some sovereign wealth funds to venture into private equity as one of the main instrument for alternate investment (Lerner, Schoar and Wang, 2008). In this paper, in a fixed effect framework we do not find any substantive difference between public and private equity investments not just in average returns but higher order moments amenable to more general risk measurement. Using novel graphical and analytic tools using ranks, these results are found to be robust to more general specification that can accommodate for possible quality issues with the data after controlling for size and sequence characteristics of the private and public equity investments.

One important point of contention that has not got wide attention in the literature is the nature of the benchmark to choose. Choice of a benchmark plays a significant role

\(^3\)Applebaum and Batt, (2012)
in empirical asset pricing literature. It is no different in the current study. We would like to draw your attention to the several issues plaguing the literature in private equity.

First, the data that has been used in private equity comes from different sources, and this generates nontrivial issues besides the data quality. For example, Thomson Venture Economics VentureXpert (TVE used in Cochrane, 2005, Kaplan and Schoar 2005, Phalipou and Gottschalk, 2009), while others including Ljungqvist and Richardson (2003) on a single large LP. While the common long and wide database like TVE might suffer from lack of data accuracy (Higson and Stucke, 2012, Phalipou, 2011), the common problem with a single source data provider is they find significant positive return that could be partly attributed to the skill and performance of LPs (Lerner, Schoar and Wongsunhwai, 2007).

One way around such a problem is multiple sources data like TVE, Prequin, Burgiss, and Cambridge Associates that also show results that document significant overperformance over benchmark possibly with a downward trend (Higson and Stucke, 2012, Harris, Jenkinson and Kaplan, 2012, among others). In this literature, it has however been acknowledged that the upshot of dubitable data quality and significant issues like “… single source bias and data accuracy…” makes strong conclusions extremely difficult (Higson and Stucke, 2012).

Second, while studies including Kaplan and Schoar, (2005) up until Harris, Jenkinson and Kaplan (2012) use passively managed tracking index like S&P 500 as a benchmark. For a retail investor, as well as for an institutional investor like a pension fund, the choice between two actively managed portfolios do not include a passively managed indexed fund. Besides S&P500 as a benchmark also makes an assumption that the portfolio that the investor is evaluating has a beta of 1 and an alpha of zero. As private equity is not included in the universe of assets considered for the market index, such a benchmark would only serve to obfuscate the true risk-return tradeoff in investing in private equity. Hence, using S&P 500 or its percentiles as a benchmark might not be free from its own shortcomings as a measurement tool as we have to evaluate the right percentile as a benchmark (Cochrane, 2005).

Finally, it has been well documented that private equity like pro-cyclical very much like the public mutual fund industry. In particular, more specialized mutual funds might be affected by the same shocks that affects the private equity funds. Unfortunately, due to aggregation such shocks might not have a sector specific or impact on the market wide index like S&P 500. Moreover, S&P 500 will not be able to exploit the sector specific variation due to a particular year, which we can identify using a time fixed effect in a panel context.
In this paper we are focus on evaluating the true choice faced by retail and institutional investors for actively managed funds. The choice is among diversified funds, one publicly traded while the other one is not. Mutual funds have been the preferred investment vehicles for investors for several decades, we want to explore is there evidence and reasons for investors to move away both for retail as well as more recently, institutional investors (James and Karceski, 2006, Baker, Haslem and Smith, 2009). In this process we do not undermine the value added to the literature with a indexed benchmark, on the contrary in the absence of a comprehensive private equity index as benchmark, S&P500 probably provides the proxy for a market index for private equity funds.

Our study brings together two lines of work which have long been seen to coexist with very few cutting across-choice of the investors are between public and private equity. On one hand, portfolios of public equity like mutual funds are highly diversifiable, mutual funds have strong disclosure and compliance requirements hence wider information availability and are generally quite liquid. Private equity, on the other hand, is often highly concentrated in specific sectors, has very little information availability to potential outside investors and is not considered a liquid asset. Applying the standard theory, the choice seems to be a no-brainer, and the academic world agreed no real financial reason for private equity investment. (Moskowitz and Vissing-Jorgensen, 2002)

However, if we peel away the layers of initial instinct and delve deeper, public equity suffers from the so called advantages, the absence of which is considered a bane for private equity investment. Let’s take the case of diversification benefits, when overall markets are down it is quite hard to exploit opportunities for a well-diversified public fund. On the other side of the coin, specialization in private equity is documented to be one of its positives (Gompers et al., 2008).

High disclosure imparts huge costs on the public funds, that eats into investors returns and might also force the firm to delist like in the case of Sarbanes-Oxley saga. Private equity funds don’t have such costs for compliance, and hence are more likely to take critical strategy decisions without public knowledge but in full view of their investors.

Finally, liquidity premium also demands its share that effectively reduces the returns to investment. None of this afflicts private equity investment which is a naturally illiquid asset. In fact, University endowment funds like Yale and Harvard Endowments might be more willing to trade liquidity for extra returns to grow the total volume of their assets however private equity often becomes an instrument of choice for alternate investments vehicles more than hedge funds as has been succinctly summed up in the following quotation:
“...private equity funds adopt less of a conflicting or “activist” strategy, as they usually will have to rely on the management to develop a longer term relationship, than hedge funds that are usually adopting a more “short term” approach...” (Wymeersch, 2012)

This current study makes several modest contributions to the literature and our knowledge base. First, we created a unique and wide dataset from private equity returns from Venture Economics and public equity mutual fund returns from Morningstar. We document that after accounting for year and firm effects, there is no real difference between the public and private equity returns. Moreover, after adjusting for size affects and controlling for sequence or years in existence, there are no perceptible differences both in lower and higher order moments between the public and private equity returns. We also find positive persistence in private equity returns that is not available in public equity returns. These results persist even under a semi-parametric rank based evaluation of the data.

We now explore the theoretical foundations for such results. We classify the reasons for this public to private migration into two broad disciplines, Finance and Economics. While the core reason for this investment migration decision is grounded in sound financial theory, the tenets of Economic theory dictate the underlying reason for the shift in investment strategy. In this paper, we explore the plausible causes and provide the empirical evidence to support the case.

In Finance, volatility or risk plays the lead role in this large investors’ investment decision. The volatility in private equity is driven by two main factors, internal and external. First, the internal factor is possibly the overreaction by adventurous Venture Capitalists has been previously documented and possibly has “...its roots in the behavioral biases of venture capitalists that irrationally associate past investment successes with future investment opportunities...” (Gompers et al., 2008, p. 2; also see Scharfstein and Stein, 1990, and Hong and Stein, 1999, for a unified description). The main external factor is really driven by fundamentals from the economy as a whole and subscribe to the view that private equity investment is indeed procyclical as documented by Cochrane (2005), Kaplan and Schoar (2005), Ljungquist and Richardson (2005). In fact, it was also documented that the external effect seems to supersede the internal one (Gompers et al., 2008). In summary, notwithstanding whether the two factors affecting private equity risk are conflicting or compounding, the bottomline is that main factors that affect the risk in the public equity market seems to be common with the ones that affect the private equity market.

The second source of investment choice comes from the persistence of returns. It has
been well documented that evidence of persistence in public equity returns from mutual funds (or “hot hands”) are at best debatable, and at worst, nonexistent (Henrickson and Merton, 1980 and others). On the other hand there is a growing body of evidence that there is persistence in private equity or entrepreneurship (Gompers et al. 2010 and references therein). This probably is caused by the constraint on mutual funds through disclosure of strategies and other stringent requirements at least since the crisis of market timing and late trading in 2003, and exodus of good managers to Hedge funds (references?). In private equity on the other hand, there is far more control of the LPs on GPs, and also degree of specialization and experience (Gompers et al, 2008).

The third source of investment choice from financial standpoint comes from the liquidity premium that reduces the return on public equity, is not there in private equity (Kaplan and Schoar, 2004, Kinlaw et al, 2011).

Now, if we explore deeper than Finance we have to delve into the Economics behind this private equity migration. The three main reasons can be outlined as the Schumpeterian principle of Creative Destruction (Davis et al., 2011). Value extraction\(^4\) and increase in total factor productivity or cost reduction. This economic rejuvenation story has been controversial, however as has been observed in the Economist that private equity might offer “…in many ways a superior model of capitalism.” (Economist, 27 November, 2004).

There are several important issues in private equity research. First, the dearth of reliable data on returns and actual investment in private equity pose serious problems on the inference based on the data. The quality of the data unlike readily available public equity returns does indeed have an impact on the measure of the risk involved. The data available through SDC Platinum Venture Economics and Thomson Banker One databases from Thomson Reuters’ is verified in each round by both the Limited Partner (or LP or the investor) and the General Partners (or GP or the manager). However, it continues to suffer from self-reporting biases of possibly badly performing projects or funds (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist and Richardson, 2003). Second, the high volatility in returns and very high failure rates (Moskowitz and Vissing-Jorgensen, 2002, p. 746, notes "...survival rates of private firms are only around 34 percent over the first ten years of the firm’s life...") make it very challenging to get a good estimate of measures of central tendency like the mean return to investment. There is often an upward bias of the measure owing mainly to survivorship and misperception of the risk of failure involved by entrepreneurs (Moskowitz and Vissing-Jorgensen, 2002, see public equity funds see Carhart, Carpenter, Lynch and Musto, 2002). Cochrane (2005)

\(^4\)Private Equity and the Culture of Value Extraction, Froud and Williams, 2007.
incorporated selection problems using a maximum likelihood procedure to evaluate the risk-return tradeoff of Venture Capital firms more accurately, and find that there is a significant effect of survivorship in both mean and volatility of returns. Hence, there might be a need for a more robust measure, possibly based on ranks or quantiles of the return or some covariates, to deal with this issue (see subsection 3.4). Third, the downside risk associated with private equity is pro-cyclical with business cycles, and is often positively correlated with public equity returns, and hence do not provide a good hedge against public equity holdings (Phalippou and Zollo, 2005). Phalippou and Zollo (2005) also find that private equity funds are also exposed to right tail-risks or those due to higher order moments. This implies that tests based on standard measures like the Sharpe Ratio would not accurately reflect the risk-return tradeoff. Finally, due to the lack of availability of accurate data the most frequently used measure of fund performance for private equity is the internal rate of return reported by Venture Economics, which is defined as the rate of return that makes the discounted net cashflow equal to zero for the private equity investment. However, the drawbacks of the internal rate of return, which independent of market timing, as a measure of performance has been pointed out by many researchers and experts, Jesse Reyes, Vice President of Venture Economics noted that "...private equity investment timing is totally under manager’s control, timing decisions should be part of the performance measure so he can be penalized or rewarded for these timing decisions..."(LP corner reported by Lisa Bushrod, September 2004, http://www.evcj.com).

All these evidence suggests that standard risk-return analysis do not satisfactorily explain what motivates the entrepreneurs or investors of private equity (Moskowitz and Vissing-Jorgensen, 2002). One of the factors that have been proposed as an explanation lies in the higher moments of the return distribution (like right skewness and fatter tails; see for example, Harvey and Siddique 2000). Affinity for right or positive skewness implies that an entrepreneur might be willing to accept lower average returns if there is a positive probability of getting a very high return. However, in our literature survey, no formal test have been done to verify whether the return distribution of private equity is more or less skewed or have fatter tails than the return to publicly traded equity with the exception of very recent work in public equity on tests based Sharpe Ratio (Ledoit and Wolf, 2008).

In this paper our objective is simple. We want to re-evaluate the evidence of the dispersion between public and private equity returns. First, to make the public equity return for mutual funds comparable to the internal rate of return available for private equity funds available from Venture Economics, we only look at those mutual funds that
reports yearly return with no dividend yield. Second, to focus more on the systematic differences we use private equity fund and publicly traded mutual fund data, rather than individual firm equity. We also do not compare the private and public equity indices as they are not in the choice set of individual investors. Third, to get a more accurate cash-flow information on private equity returns we restrict our attention to only mature (not necessarily liquidated) private equity funds that had inception before 1996 so that we have some actual return information rather than imputed ones. Finally, we picked the public equity mutual funds after 1996 to 2003 to control for the effect year of the inception of private equity funds (Kaplan and Schoar, 2005). Although there is still some degree of dependence left between the private and public equity funds, we reduce the impact by using both year and fund specific fixed effects (see subsection 3.3).

We compare the overall difference between the two return distributions in the panel data, and observe that incorporating both the year and fund specific fixed effects explains a substantial portion of the variation in private equity returns as well public equity. We also incorporate variables like lagged returns to see if there is persistence in returns in either public equity mutual funds or private equity ones, and include non-linear terms for size of the fund to investigate any evidence of convexity (or concavity) in the relationship between returns and fund size. We find persistence at least to two periods in private equity funds, however, public equity fund also shows some positive persistence, maybe due to momentum strategies, but quickly reverses to negative with two year lagged return maybe due to the size effect (Berk and Green, 2004). We also explore whether returns are indeed what entrepreneurs are after or is it just the size of the fund making "money chasing deals" using ranks of size as a covariate to compare the returns (Gompers and Lerner, 1998; Gompers and Lerner, 2000; Berk and Green, 2004; Jones and Rhodes-Kropf, 2002)?

The paper is organized as follows. We discuss the possible shortcoming of a standard measure of risk for mean-variance type analysis like the Sharpe Ratio in Section 2. The data and analysis part is discussed in details in different subsections in Section 3. We discuss the data and distributional comparison of the unadjusted private and public equity returns under different restrictions in subsection 3.1. This is followed by subsection 3.2 where we used Fractile Graphical Analysis to compare the return distributions after controlling for ranks of fund size (Mahalanobis, 1961; Bera and Ghosh, 2006). In subsection 3.3 we introduce the standard OLS regression analysis with fixed effects for years and funds for both public and private equity funds. We compare the private and public equity model residuals to test for departures in finite number of moment directions using the two sample version of smooth test (Bera, Ghosh and Xiao,
2012). In the final subsection 3.4 of Section 3, we apply rank (fractile) regression method to address possible non-linearity in a robust way and hence compare the residuals of this semiparametric model specification for private and public equity returns. In Section 4 we apply all the above techniques to compare Venture Capital and Buyout funds. We conclude with future directions in Section 5. In Appendix 7, we discuss the basic motivation of the two sample version of Neyman smooth test (Neyman, 1937, see also Bera and Ghosh, 2002). We also introduce the main theorems driving the two sample test and the sample selection criteria function procedure (discussed in details in Appendix subsection 7.3) proposed by Bera, Ghosh and Xiao (2012). In Subsection 7.2, Fractile Graphical Analysis is discussed briefly (Mahalanobis, 1960, Bera and Ghosh, 2006).

2 Measuring Risk in Return

Financial theory predicts that investors in publicly traded securities would assume more risk if they are compensated with more returns. Naturally one has to presume that entrepreneurs who assume more risk in venturing into privately held companies are lured by the premium commanded by these inherently riskier assets. While there is substantial evidence for the conventional wisdom of risk-return trade-off in publicly traded assets (Fama, 1970; Fama and French, 1992, 1999), recent literature on returns and performance of private equity suggests that these assets, although riskier than their publicly traded counterpart, do not have sufficient return to justify the excess risk (Moskowitz and Vissing-Jorgensen, 2002; Kaplan and Schoar 2005; Gottschalg, Phalippou, Zollo, 2003).

Despite the sheer size of the private equity market (the market value of total private equity ranges from $3.7 trillion in 1989 to $5.7 trillion in 1998; the corresponding figures for public equity are $1.6 trillion and $7.3 trillion, see Moskowitz and Vissing-Jorgensen, 2002), it has not received much academic attention till very recently, at least in terms of the relative performances of private and public equity markets. In 2004 as much as 11.5% of households had some business equity with a median holding of 100,000 in 2004 dollars while nearly 47.4% households had some stocks in mutual funds or other pooled accounts that accounted for 24,300 in 2004 dollars (see Bucks, Kennickell, and Moore, 2004, Tables 5 and 6). According to National Venture Capital Association (NVCA, www.nvca.org), on Venture Capital’s contribution "According to a 2004 Global Insight study, venture-backed companies accounted for 10.1 million jobs and $1.8 trillion in revenue in the United States in 2003."

One of the continuing topics of interest is the apparent anomaly (referred to as the "private equity premium puzzle" by Moskowitz and Vissing-Jorgensen, 2002) in the
risk-return tradeoff in private equity. In particular, one would like to answer, "What drives the entrepreneurs to assume so much risk in relatively undiversified and extremely concentrated portfolios with very little commensurate return?" Economic theory tells us that entrepreneurs assume the risk associated with a project driven by the prospect of abnormal returns, and most often they have high appetite for risk. While this can explain why entrepreneurs would start up companies or projects but it cannot explain why ex-post they (and their financier or investors) will continue given that a diversified portfolio of publicly traded assets will give them as much return with lower risk exposure. One possible answer that has been suggested is a large degree of non-pecuniary benefits of being self-employed and an expectation of large pecuniary benefits (Hamilton 2000). Others have pointed out that there is a high degree of heterogeneity in returns obtained by private equity investors and managers depending on their institution type and degree of sophistication (Lerner, Schoar and Wongsunwai, 2007).

One of the most common measures for risk adjusted average excess return is the Sharpe ratio \(\frac{\mu}{\sigma} \), and different performance tests based on it have already been proposed (Jobson and Korkie, 1981; Memmel, 2003, Ledoit and Wolf, 2008). To test whether there is significant difference between the performances of public and private equity the following hypothesis can be tested,

\[
H_0 : \frac{\mu_1}{\sigma_1} = \frac{\mu_2}{\sigma_2} \quad \text{against} \quad H_1 : \frac{\mu_1}{\sigma_1} \neq \frac{\mu_2}{\sigma_2}
\]

where the subscripts '1' and '2' refers to these two types of equity. There are many equivalent forms of this null hypothesis, such as, \(H_0 : \frac{\sigma_1}{\mu_1} = \frac{\sigma_2}{\mu_2} \), \(H_0 : \mu_1\sigma_2 = \mu_2\sigma_1 \), \(H_0 : \frac{\mu_1}{\mu_2} = \frac{\sigma_2}{\sigma_1} \) etc. And if we follow the standard approaches, each form of the same hypothesis could give different results. The tests that are standard among the practitioners were crucially based on the normality assumptions (Jobson and Korkie, 1981; Memmel, 2003). However, the standard tests are not valid when financial returns have tails heavier than the normal distribution or for time series and panel datasets (see Ledoit and Wolf, 2008 and references therein). Private equity funds can be leptokurtic or have fatter tails than normal distribution, hence standard tests based on Sharpe Ratios might be misleading (see Figure 1). To address the problem, Ledoit and Wolf (2008) suggested two different procedures. First, was to implement \textit{Heteroscedasticity and Autocorrelation Consistent} (or \textit{HAC}) standard errors for the difference of two Sharpe Ratios. Second, to apply \textit{Studentized time series bootstrap} methods to construct confidence intervals with a corrected coverage probability from the actual data to do hypothesis testing. However, there are significant drawbacks of the procedure involving Sharpe ratios, and the jury
is still out on tests solely based on the Sharpe ratio, as Ledoit and Wolf (2008, p. 851) themselves observe:

"...It has been argued that for certain applications the Sharpe ratio is not the most appropriate performance measure; e.g., when the returns are far from normally distributed or autocorrelated (which happens for many hedge funds) or during bear markets. On the other hand, there is recent evidence that the Sharpe ratio can result in almost identical fund ranking compared to alternative performance measures..."

One first objective of this paper would be extend tests based on comparing Sharpe ratios from private and public equity to those comparing entire distributions (to a finite set of moments) rather than just a function of the first two moments. Moreover, testing individual factors like average risk, volatility measures, and higher moments like skewness and kurtosis should be done jointly to remove the effect of interrelationship among the individual tests. Extending it further, we should really look at the difference in the entire return distributions of public and private equity returns in Sections 3.

For example, we investigated the monthly return on private equity firms (obtained from Securities Data Corporation (SDC)-Platinum database on 370 new issues in the US in 2001 of private equity that did not give out dividends) and the monthly return on of a random sample of 1837 publicly traded companies from CRSP (December of 2001) given in Figures 1A and 1B.
Figures 1: Kernel probability density function of the monthly returns on 370 private equity firms from SDC-Platinum database, new issues in the US in 2001 that did not give out any dividends. We have averaged out the monthly returns in Panel 1A. In Panel 1B we estimate the kernel probability density function of 1837 publicly traded firms from Center for Research on Security Prices (CRSP, December of 2001) and looked at the average monthly return for 2001. We have used the Gaussian kernel with an automatic bandwidth for a normal reference density method.
Figures 1A and Figure 1B depict the differences between monthly private and public equity returns in 2001. While the average return seems to be similar, there could be distinguishable differences in terms of volatility, skewness, kurtosis or some higher order moments.

Our second objective is to identify the sources for the departure between the two return distributions. We can even select the exact number of moments we want to compare depending on the data. The major part of the paper would be to device and perform a statistical test that can compare the shapes of two return distribution and identify the exact order of moments [first (average), second (volatility), third (skewness), fourth (kurtosis or peakness) or even higher moments] where they might differ. Once that is achieved we will move forward to explain the plausible causes of the departure.

3 Data and Analysis

3.1 Unadjusted Private and Public Equity Returns

The scarcity of reliable data on private equity investment and returns is further exacerbated by the bias that we only observe data on surviving firms or survivorship present in most private equity datasets (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist and Richardson, 2003). We collect and refine the data on returns and investment in private equity available from several sources including SDC-Platinum, National Venture Capital Association (NVCA)* VentureExpert or Venture Economics database by Thomson Financial, and publicly traded equity returns from the CRSP database. We compare the average returns and risk, and measures like the Sharpe ratio of performance between the different types of assets. However, to get a fuller picture of the types of deviations between the two asset classes, we construct the distribution of returns of funds of private and publicly traded assets. Hence, we can perform a joint test to see if there are significant differences in moments like location (average return), scale or volatility (risk measures) and higher-order moments like skewness and kurtosis. The summary statistics reported in Tables 1A and 1B clearly shows that the distribution of the publicly traded and private equity returns are different from each other.

We have also collected data on publicly traded open-ended US equity mutual fund returns from Morningstar Principia database from January CDs 1997-2003 (data as of December from 1996-2002) to reduce survivorship issues. This data is compared with the private equity funds returns data from Venture Economics database of funds that had inception after 1980. For comparing the two we have used non-intersecting time
points public equity funds from 1996 and private equity funds that started before 1996 particularly in light of recent research that private equity funds returns are influenced by the public equity market conditions in the year of its inception (Kaplan and Schoar, 2005). We find overwhelmingly that the unconditional distributions of the private and public equity fund returns are indeed distinctly different (see, Figure 2A) and the results in Tables 1A and 1B. In fact, we also report the Empirical Distribution Function or EDF for each of the two groups in Figure 3A.

To improve comparability we further filter to only those public equity funds that offer no dividend yield in that year for several reasons. First, it is more in line with private equity funds that tend to have similar characteristics in intermediate years between different rounds after inception. Second, it reduces the differential tax implications on the returns like capital gains and those on dividend that is treated almost like income in US tax codes (see Poterba, 1989; Bergstresser and Poterba, 2002; Ghosh, 2007). Finally, the internal rate of return that is reported as a standard for private equity funds can be compared directly to the annual rates of return for publicly traded mutual funds that reinvest in the stocks rather than giving out dividends. Even in this smaller group the unadjusted returns are widely different across the years without any year specific fixed effects (see Figures 2B and 3B).

Finally, given that the data on private equity is self reported between rounds (although it is verified from both the Limited Partner or LP, the investor of the private equity firm, and the General Partner or GP, the managing company of the private equity fund), the cashflow between different rounds might be affected by misreporting or underreporting of losses (or gains possibly for tax purposes) due to non-survival (or merger) of some funds with others (Moskowitz and Vissing-Jorgensen, 2002; Cochrane, 2005). Hence, we can expect those funds that have been liquidated would be more stable with more accurate report on the amount of the cash-flow generated. This, of course, among other things imply that our sample size gets reduced substantially (491 funds as compared to 1714 in the full sample). Even in this smaller group of liquidated private equity funds, we find that the distributions of public equity funds with no dividend yields and the liquidated private funds are substantially different.

Unfortunately, standard tests of goodness-of-fit like Kolmogorov-Smirnov(K-S) and Cramér-von Mises (C-vM) (reported in Table 1B) does not provide us with the exact nature of such departures from the null hypothesis of equality of two distributions. The data shows that not only is there a difference in both the location and scale of the distribution, but the shape parameters of the distribution might also be different. In order for us to numerically compare the returns distribution of private equity funds with
public equity funds, we investigate the summary statistics of each of the groups. Table 1A provides a sample size of public equity fund to \(n = 10103 \) (full sample after 1996 till 2002) and \(n = 5635 \) for mutual funds with no yields. The size of the sample of private equity funds are \(m = 1714 \) (full sample) and \(m = 491 \) (for liquidated funds), respectively. As we apply the sample size selection methods for comparing distributions, we have restricted our sample for private equity to only the ones that are more mature or spent some time after inception. We restrict our attention to only those private equity funds with fund inception year before 1996 \((m = 840) \). Our working assumption is that private funds that are mature will start to show some cash-flow from 6 years after inception (Kaplan and Schoar, 2005).
Figure 2-3: Kernel density functions (2A-2B) and Empirical Distribution Functions (3A-3B) of unadjusted annual public equity funds returns (1996-2002) and private equity internal rates of returns (inception before 1996). Figure 2C and 3B are the kernel density estimates of Venture Capital and Buyout funds.
Table 1: Summary Statistics (1A) of returns of Public and Private Equity funds with different restrictions. Table 1B shows the omnibus test statistic for distribution comparison (Modified Kolmogorov-Smirnov and Cramer-von Mises statistics) and corresponding 0.1% critical value reported in ‘D’Agostino, R.B. and M.A. Stephens. Goodness-of-Fit Techniques. New York: Marcel Dekker, 1986.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>1st Q.</th>
<th>3rd Q.</th>
<th>coef. skew</th>
<th>excs.kurt</th>
<th>Sharpe Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public (full)</td>
<td>10103</td>
<td>10.19</td>
<td>11.51</td>
<td>22.69</td>
<td>-6.63</td>
<td>24.4</td>
<td>0.813</td>
<td>3.93</td>
<td>0.45</td>
</tr>
<tr>
<td>Public (No yield)</td>
<td>5635</td>
<td>7.59</td>
<td>6.65</td>
<td>26.58</td>
<td>-12.31</td>
<td>23.19</td>
<td>1.079</td>
<td>3.54</td>
<td>0.29</td>
</tr>
<tr>
<td>Private (full)</td>
<td>1714</td>
<td>13.36</td>
<td>6.28</td>
<td>42.25</td>
<td>-1.14</td>
<td>16.28</td>
<td>9.44</td>
<td>137.61</td>
<td>0.32</td>
</tr>
<tr>
<td>Private (liq.)</td>
<td>491</td>
<td>11.15</td>
<td>8.79</td>
<td>20.05</td>
<td>1.39</td>
<td>16.13</td>
<td>2.49</td>
<td>13.01</td>
<td>0.56</td>
</tr>
<tr>
<td>Private (pre96)</td>
<td>840</td>
<td>15.11</td>
<td>9.85</td>
<td>37.13</td>
<td>2.04</td>
<td>18.4</td>
<td>12.31</td>
<td>238.93</td>
<td>0.41</td>
</tr>
<tr>
<td>VC(pre96)</td>
<td>610</td>
<td>15.27</td>
<td>18.7</td>
<td>41.59</td>
<td>1.43</td>
<td>17.07</td>
<td>11.97</td>
<td>208.29</td>
<td>0.38</td>
</tr>
<tr>
<td>LBO (pre96)</td>
<td>206</td>
<td>15.27</td>
<td>12.17</td>
<td>22.32</td>
<td>4.225</td>
<td>22.43</td>
<td>1.65</td>
<td>9.13</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Table 1B. Goodness-of-Fit Statistics based on the EDF.

<table>
<thead>
<tr>
<th>Test</th>
<th>Modified KS</th>
<th>Modified CvM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T* Statistic (All-all)</td>
<td>6.96</td>
<td>16.47</td>
</tr>
<tr>
<td>T* Statistic (NoYield-All)</td>
<td>9.12</td>
<td>21.85</td>
</tr>
<tr>
<td>T* Statistic (NoYield-liq.)</td>
<td>6.31</td>
<td>9.67</td>
</tr>
<tr>
<td>T* Statistic (NoYield-pre96)</td>
<td>8.7</td>
<td>16.62</td>
</tr>
<tr>
<td>T* Statistic(VC-LBO)</td>
<td>2.04</td>
<td>2.38</td>
</tr>
<tr>
<td>Critical Upper 0.1%</td>
<td>1.95</td>
<td>1.167</td>
</tr>
</tbody>
</table>

Table 1A. Summary Statistic for Return Distributions
Table 2: BGX Smooth Test of Goodness-of-Fit and corresponding p-values for the unadjusted returns for the full sample of public and private equity with corresponding sample sizes for the bigger \((n)\) sample and the smaller \((m)\) sample sizes.

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{\Phi}_1^2 (\chi_1^2)$</th>
<th>$\tilde{u}_1^2 (\chi_1^2)$</th>
<th>$\tilde{u}_2^2 (\chi_1^2)$</th>
<th>$\tilde{u}_3^2 (\chi_1^2)$</th>
<th>$\tilde{u}_4^2 (\chi_1^2)$</th>
<th>$\tilde{u}_5^2 (\chi_1^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full ((n = 10103, m = 1714))</td>
<td>842.03***</td>
<td>10.79***</td>
<td>223.67***</td>
<td>330.87***</td>
<td>210.79***</td>
<td>46.15***</td>
</tr>
<tr>
<td>No Yield ((n = 5635, m = 1714))</td>
<td>990.02***</td>
<td>26.02***</td>
<td>445.33***</td>
<td>42.67***</td>
<td>425.39***</td>
<td>3.19*</td>
</tr>
<tr>
<td>PE Sample ((n = 5635, n_1 = 518))</td>
<td>262.06***</td>
<td>7.56**</td>
<td>134.94***</td>
<td>9.36***</td>
<td>96.93***</td>
<td>1.77</td>
</tr>
<tr>
<td>PE liquidated ((n = 5635, n = 491))</td>
<td>-417.49***</td>
<td>14.4**</td>
<td>189.26***</td>
<td>0.83</td>
<td>163.15***</td>
<td>0.35</td>
</tr>
<tr>
<td>PE pre1996 ((n = 5635, m = 840))</td>
<td>604.5***</td>
<td>56.45***</td>
<td>235.53***</td>
<td>0.48***</td>
<td>260.12***</td>
<td>1.34***</td>
</tr>
<tr>
<td>PE pre96-liq ((n = 5635, m = 463))</td>
<td>382.55***</td>
<td>15.87**</td>
<td>169.59***</td>
<td>2.35</td>
<td>156.99***</td>
<td>1.11</td>
</tr>
<tr>
<td>PE VC pre96 ((n = 5635, m = 610))</td>
<td>474.95***</td>
<td>32.57***</td>
<td>184.87**</td>
<td>0.767</td>
<td>218.7***</td>
<td>0.39</td>
</tr>
<tr>
<td>PE BO pre96 ((n = 5635, m = 206))</td>
<td>109.7336***</td>
<td>25.729**</td>
<td>35.13**</td>
<td>5.588**</td>
<td>34.09***</td>
<td>0.41</td>
</tr>
<tr>
<td>VC-BO pre96 ((n = 610, m = 206))</td>
<td>25.2***</td>
<td>11.86***</td>
<td>0.35</td>
<td>5.66**</td>
<td>0.41</td>
<td>5.1**</td>
</tr>
<tr>
<td>VC-BO pre96 (sample) ((n = 610, m = 137))</td>
<td>18.47**</td>
<td>8.26***</td>
<td>0.76</td>
<td>1.94</td>
<td>0.02</td>
<td>6.49**</td>
</tr>
</tbody>
</table>

Table 2. Smooth test and p-values (distributions under $H_0 : F = G$)*** significant at 1%, ** significant at 5%, * significant at 10%.
We perform a smooth test (see Bera and Ghosh, 2001 for an introduction to smooth tests) on the two return distributions from public equity funds and private equity funds. We note that the sample size for publicly traded funds is much larger than the privately traded funds. This differential nature of sample size can be exploited by the two sample version of the smooth test (Bera, Ghosh and Xiao, 2007, see Section 7). From the full sample version reported in Table 2, it is evident that the overall test $H_0 : F = G$ of equality of two distributions is overwhelmingly rejected ($\hat{\Psi}_0^2 = 842.03$) which under the null hypothesis has a central χ^2 distribution with 6 degrees of freedom, so chosen so as to focus on the higher order moments of the distribution of private equity returns. Further, under the null hypothesis each of the components should follow independent central χ^2.

The overall two-sample smooth goodness of fit test shows that one or more of the constituent elements must contribute to the directions of departure from the hypothesized distribution. As expected from the Figures 2A and 3A, the estimated components \hat{u}_1^2 through \hat{u}_6^2 are all strongly statistically significant, hence we can conclude that the private and public equity distributions are different in the directions of the first six moments of the distribution of the probability integral transform (or the imputed ranks).

There are departures in the general directions of location, scale and shape parameters at least up to order 6. Furthermore, we can also conclude that the private equity return distribution is also different from the public equity returns in the directions of higher order moments, namely, the skewness and kurtosis related terms ($\hat{u}_3^2 = 330.87$ and $\hat{u}_4^2 = 210.79$, both are significant at 1% level). This implies that when testing jointly, the public and private equity returns differs in the first four moment directions. Furthermore, \hat{u}_5^2 and \hat{u}_6^2 are also both statistically significant at 1% level, hence, some higher order terms are different between the two distributions. Tests based on the Sharpe ratio might not reveal these details although it could be a convenient test procedure (Ledoit and Wolf, 2008).

In the applied literature, size distortion in finite sample is a common problem in Score (or LM) type tests. One way of reducing the finite sample size distortion is to have the smaller sample size (m) increase at a much slower pace than the bigger sample size (n) as discussed in the Section 7 (see also, Bera, Ghosh and Xiao, 2007). Hence, we select a sample size as small as 9.21% of n and perform the smooth test again with $m = \frac{n^2}{n^2_1} \times n$. instead of the original m (as per recommendation by the minimum criteria function analysis in the Appendix A). The results are qualitatively similar although results are less strongly significant compared to the full sample across the board for the smooth test. The first and third order terms are now marginally significant at 1% level.
\(\hat{u}_1^2 = 7.56 \) and \(\hat{u}_2^2 = 9.36 \) while the second, fourth and fifth order term is more strongly significant (see line 3 in Table 2).

However, we should recognize that given the different covariates like size or year of inception or sequence might have a role to play, there might be predictable components explaining the internal rates of return from these funds. This is addressed in the following subsections 3.2 through 3.4.

3.2 Fractile Graphical Analysis of Equity Returns

Although we do reject \(H_0 : F = G \) that the return distributions for private and public equity are the same with the BGX Smooth test but there is no indication of the nature of departure from \(H_0 \) using the traditional tests like Kolmogorov-Smirnov or Cramér-von Mises type tests (see Table 1B). We use a modified version of Fractile Graphical Analysis method (Mahalanobis, 1960, also see Bera and Ghosh, 2006, For details see Appendix A) to test the overall distribution of returns conditional on the size of the fund for private and public equity. We include size as a possible covariate as several studies found an impact of fund size on return distribution but not the sequence number (Gompers and Lerner, 1999; Kaplan and Schoar, 2005; Phalipou and Zollo, 2005). Figures 3(i),3(ii) and 3(iii) represent the fractile graphs with number of fractile groups \(g = 10, 20 \) and 50 and depicts the difference between private and public equity mutual funds. In the figures, the blue (top) solid line represents the private equity funds returns for each size fractile group. The shaded area around the line represents the estimation uncertainty or dispersion, i.e., the bootstrapped standard error at each fractile group mean. As we observe with higher number of fractile (or rank) groups of sizes, the separation area between the two graphs is more fragmented. This also make it increasingly difficult to conclude whether the distributions are different overall. Hence we would need some more tangible analytical or simulation based hypothesis testing methodology to test for separation of the two fractile graphs.
Figure 3: Fractile Graphs (Mahalanobis, 1960) for different number fractile groups \((g)\) for public and private equity \((i) – (iii)\) and between Venture capital and Buyout Fund returns \((iv) – (vi)\).

Figure 3 \((i)\): \(g = 10\) Size Fractiles

Figure 3 \((ii)\): \(g = 20\) Size Fractiles

Figure 3 \((iii)\): \(g = 50\) Size Fractiles

Figure 3 \((iv)\): \(g = 10\) Size Fractiles (VC-BO).

Figure 3 \((v)\): \(g = 20\) Size Fractiles (VC-BO)

Figure 3 \((vi)\): \(g = 50\) size fractiles (VC-BO)
We report the results of the individual and group F-tests in Table 3A, if we want to test all the conditional fractile means jointly. We observe from the results of the overall F-tests and tests for Error Areas of the two fractile graphs gives similar results for different values of \(g \). Individually, after adjusting for the ranks of the fund size the adjusted Error Areas of fractile graphs of both private and public returns are distributed as \(\chi^2 \) with \(g \) degrees of freedom. This signifies that the FGA model is indeed a good fit for both public and private equity returns. The test for the Area of Separation though indicates that at 5% level of significance there is a difference between the two fractile graphs. The overall F-test for fractile graphs helps us to compare the conditional fractile means jointly, and infer that the at 5% level at least one of the size fractile means of returns is different between the groups. We can conclude that the public and private equity fund distributions are different using the F-test, or adjusting for the fractile groups of rank, private and public equity fund returns are different using 5% level of significance. This implies that there might be some abnormal returns at each size fractile, hence, size alone or "money chasing deals" cannot explain the difference of returns (Gompers and Lerner, 2000; Phalippou and Zollo, 2005).

However, although it adjusts for the fractiles of the covariate size, the overall F-test do not give us any indication of the directions of departures from the null hypothesis very much like the omnibus test (Kolmogorov-Smirnov and Cramer-von Mises tests). We further note that tests based on fractile graphs provides a non-parametric alternative to tests based on functions of the first two moments (or Sharpe Ratio). Unlike the tests based on moments we also adjust for the conditional fractile groups of the fund size (Jobson and Korkie, 1981, Memmel, 2003, Ledoit and Wolf, 2008).

We also compare the actual size of the tests of hypothesis using bootstrap covariance matrices to normalize the test statistic. We have simulated the test statistic by drawing the same first and second samples of \(X \) and \(Y \) variable and repeated it \(r = 1000 \) times, the bootstrap replication was \(B = 10000 \) to estimate the covariance matrix. We observe that the test size of all the tests are pretty close to the 5% nominal level test (minimum being 0.042 to maximum of 0.064), though there is some finite sample size distortions.
Table 3: Hypothesis tests based the Fractile Graphical Analysis using bootstrapped Standard Errors for Private and Public Equity and between Venture Capital and Buyout Funds with p-values in parenthesis for the asymptotic tests (3A). We also look at the actual size of nominal 5% level test to see possible size distortion with the distribution under H_0 on the column header.

<table>
<thead>
<tr>
<th>#Fractile Groups</th>
<th>Private Equity</th>
<th>Public Equity</th>
<th>Area of Separation</th>
<th>Overall F-test</th>
<th>VC-Buyout F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under $H_0 : m_1(x) = m_2(x)$</td>
<td>$m \Gamma_{12}^2 \sim \chi_g^2$</td>
<td>$m \Gamma_{34}^2 \sim \chi_g^2$</td>
<td>$2m \Gamma_{*}^2 \sim \chi_{2g}^2$</td>
<td>$\frac{2r_g}{(r_{12}^2 + r_{34}^2)} \sim F_{2g,g}$</td>
<td></td>
</tr>
<tr>
<td>$g = 10$</td>
<td>8.11 (0.62)</td>
<td>10.11 (0.43)</td>
<td>95.72***</td>
<td>10.51***</td>
<td>0.774 (0.65)</td>
</tr>
<tr>
<td>$g = 20$</td>
<td>19.51 (0.49)</td>
<td>23.97 (0.24)</td>
<td>104.35***</td>
<td>4.8***</td>
<td>1.53 (0.13)</td>
</tr>
<tr>
<td>$g = 50$</td>
<td>56.81 (0.24)</td>
<td>49.4 (0.5)</td>
<td>146.24***</td>
<td>2.75***</td>
<td>1.84*** (0.00)</td>
</tr>
</tbody>
</table>

Table 3A. Asymptotic tests of normalized Error Area and the Area of Separation (P-values in parenthesis)

<table>
<thead>
<tr>
<th>Size of the tests</th>
<th>Private Equity</th>
<th>Public Equity</th>
<th>Area of Separation</th>
<th>Overall F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under $H_0 : m_1(x) = m_2(x)$</td>
<td>$m \Gamma_{12}^2 \sim \chi_g^2$</td>
<td>$m \Gamma_{34}^2 \sim \chi_g^2$</td>
<td>$2m \Gamma_{*}^2 \sim \chi_{2g}^2$</td>
<td>$\frac{2r_g}{(r_{12}^2 + r_{34}^2)} \sim F_{2g,g}$</td>
</tr>
<tr>
<td>$g = 10$</td>
<td>0.048</td>
<td>0.042</td>
<td>0.054</td>
<td>0.064</td>
</tr>
<tr>
<td>$g = 20$</td>
<td>0.054</td>
<td>0.046</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>$g = 50$</td>
<td>0.046</td>
<td>0.05</td>
<td>0.054</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Table 3B: Actual Size of the 5% FGA tests using Bootstrap Covariance matrix (repl. = 500, Boots. = 5000)
A problem with omnibus test methods like Kolmogorov-Smirnov and Cramér-von Mises type tests that have power in all directions is that they have weak power against more directional alternative. Hence, we might fail to reject a hypothesis that is indeed false. In our case here we do reject the null hypothesis of equality of the distributions of private and public equity returns. So we can believe beyond reasonable doubt the two distributions are indeed different overall. However, the same thing cannot be said about all parts of the distributions measured by subsets of fractile means or graphs (see Figures 3(i) – 3(iii)). It appears that for $g = 10$ and $g = 20$ fractile groups, there is a difference between private and public equity returns after the 40th percentile of net asset for public equity funds or total commitment size of private equity funds (or top 60% of fund sizes). It is however more difficult to separate out for the bottom 40% of the funds, or when $g = 50$ due to the wide variation of the fractile means.

3.3 Fixed Effects Adjusted Equity Returns

In previous subsections 3.2 we noted that there could be other covariates and possible fixed effects due to year and/or specific firms (or funds) that might have effects on the internal rates of return of private equity firms or returns of public equity funds. We first look at the effects of different covariates like the sequence number of the private equity firm or the year of existence of the public equity fund. We allow for linear dependence in both models shown in Tables 4-6. For the private equity funds we have used the model similar in Kaplan and Schoar (2005 p. 1803) but used the internal rate of return reported by Venture Economics,

\[IRR_{it} = \alpha_t + \beta(FundSize_{it}) + \lambda(Sequence_{it}) + \gamma VC + \varepsilon_{it}, \tag{1} \]

where for the i^{th} individual firm or partnership and the t^{th} period of time IRR_{it} is reported by Venture Economics, $FundSize_{it}$ is the logarithm of the capital committed to the fund, $Sequence_{it}$ is the logarithm of the sequence number of the fund (later funds of the same private equity partnership or firm), and VC is a dummy equal to 1 if the partnership is a venture capital firm and 0 otherwise. We have included non-linear terms of fund size and sequence number to account for the size of the fund to have some non-linear relationship with the rate of return reported in Kaplan and Schoar (2005). This in essence is similar to the findings of Ippolito (1992), Chevalier and Ellison (1997), Sirri and Tufano (1998) for public mutual fund returns, and Berk and Green (2004). We have further used fixed effects for both year and firm to filter out predictable information related to the investment environment in the year of inception and reputation of the
firm. Lack of enough data points due to a short time dimension t could potentially be a problem in models with several independent variables. The results of the regressions are reported in the Table 4 in columns (1) – (8). In particular, from (1) we observe that allowing for a fixed year-specific effects and no non-linear (square) terms, both size ($\hat{\beta} = 3.38$) as well as venture capital status ($\hat{\gamma} = 6.79$) have significant positive effect on the internal rate of return, using 1% level with a sample of size $m = 840$ private equity returns with inception prior to 1996. If however, we include both year and firm specific effects in column (4), there is a reversal both fund size and venture capital status becomes statistically insignificant and economically negative. On the other hand, the sequence of number of the fund is now statistically significant at 5% level and negative, implying that after accounting for year and firm specific effects the returns to private equity reduces for follow-up funds. This has been mentioned in the literature, that one of the reasons of this could be the lack of performance of follow-up funds that starts in boom times besides follow-up funds might have a watering down of returns (Kaplan and Schoar, 2005). Given the argument that the returns self-reported by GP and LP might be misleading before the firm is completely liquidated and most cash-flows settled, we look at the funds that were liquidated after starting before 1996 (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist and Richardson, 2003). With a smaller sample size of $m = 463$, it was evident in column (2) that accommodating for yearly fixed effect, size, sequence and whether the firm is a Venture Capital fund do not play any role in the internal rate of return. In column (5), the results are similar even if we include both year and fund specific fixed effects.

RESET test (not reported) shows that there is a possible non-linearity that has not been accounted for in the simple model, hence we include square terms for both size and sequence related variables in model (1). Using year specific fixed effects in column (3), venture capital fund status seem to be important, as is the size of the fund that positively affects the dependent variable, but is however concave in the second order term for size ($\hat{\beta}_{lin} = 11.6$ and $\hat{\beta}_{sq} = -0.96$) are both statistically significant at 5% level. If on the other hand, we compared to the results in the previous part with no non-linear terms, allowing for fixed yearly and fund specific, size and venture capital fund status are not significant. The linear expression for the sequence number seems to play an important negative role at 5% level ($\lambda_1 = -22.53$). From columns (7) – (8), for this full model with both linear and non-linear terms, internal rates of return of liquidated private equity firms do not show any dependence on size, sequence number or venture capital status of the funds unlike the findings in Kaplan and Schoar (2005) and Gompers and Lerner (2000).
We have also explored the Venture Capital only and Buyout only funds, and ran similar regression reported in Table 5. If we focus only on Venture Capital Funds (with \(m = 610 \) that outnumber Buyout funds which is \(m = 206 \) that had an inception prior to 1996 in column (1), we find that accounting for fixed effects for year and firm specific components, sequence play an important and negative role marginally statistically significant at 10\% level. If on the other hand we only restrict ourselves to liquidated funds that started prior to 1996 with a reduced sample size of \(m = 364 \) in column (2), the effects are not statistically significant. The full model with non-linear terms for logarithms of size and sequences in column (3), the results remain qualitatively similar for VC funds starting before 1996, as does the insignificant results for liquidated funds. The LBO funds show an economically significant negative effects of size and sequence numbers in column (4) and (7), however neither of them are statistically significant after adjusting for fixed effect of years and firms. Liquidated LBO funds regression output reported in column (6) and (8), after adjusting for yearly fixed effects, do not show any statistically significant influence of size and sequence number.

We further investigate the persistence results that are reported for private equity fund returns based on internal rates of return of funds that are launched before or in earlier rounds to see returns are persistent as reported by Kaplan and Schoar (2005). The model

\[
Performance_{it} = \alpha_t + \delta(Performance_{it-1}) + \gamma VC + \varepsilon_{it}
\]

(2)

based on IRRs reported by Venture Economics as a measure of performance for the \(i^{th} \) firm in the \(t^{th} \) period of time. The regression results are given in Table 4 in columns (9) – (10). We observe that venture capital fund or not plays an important statistically significant positive role in the returns with both one and two lagged dependent variable using yearly fixed effects. From column (9), past sequence returns does have a positive impact on future returns(\(\hat{\delta}_1 = 0.59 \)), while past two sequence returns also seem to have a significant positive impact \(\left(\hat{\delta}_1 = 0.78, \hat{\delta}_2 = 0.1 \right) \). Similar results for Venture capital only private equity funds are reported in Table 5 columns (9) – (10), we observe that past one periods return has a significant positive impact \(\left(\hat{\delta}_1 = 0.85 \right) \), and both of past two sequence returns show a positive impact \(\left(\hat{\delta}_1 = 1.03, \hat{\delta}_2 = 0.1 \right) \). All results accommodated for clustering with the funds for public equity (or firms for private equity).

We would like to compare similar models with public traded mutual funds reported by Morningstar Principia Mutual Fund Database. Given that Principia database is updated monthly and would potentially suffer from survivorship bias we use several
years January releases (1997-2003) of previous year’s data to mitigate the survivorship
(see Bergstresser and Poterba, 2002; Carhart, Carpenter, Lynch, and Musto, 2002). It
also enables us to use the panel data structure to take care of yearly fixed effects and
in some cases fund specific fixed effects as well. We further incorporate the size effects
and the effects of the total capitalization of the funds in terms of its net assets. Finally,
to accommodate for comparing with the data available for private equity return we only
look at open ended mutual funds that do not give out any dividend, this makes the
internal rate of return \((IRR_{it}) \) and the rate of return \((return_{it}) \) of the fund the same.
The overall regression model

\[
return_{it} = \alpha_t + \beta(FundSize_{it}) + \lambda(Sequence_{it}) + \epsilon_{it},
\]

where for the \(i^{th} \) individual fund and the \(t^{th} \) period of time \(return_{it} \) is reported by
Morningstar, \(FundSize_{it} \) is the logarithm of the net assets and \(Sequence_{it} \) is the loga-
rithm of the year number of the fund (number of years of the same fund). As mentioned
before we also incorporate non-linear terms for variables to account for non-linear effects
of fund size and vintage of funds. In particular we are interested to incorporate effects
of size reported in several works like Fama and French (1992, 1997, 1999), and effects of
size and vintage that are implied in Berk and Green (2004, p. 1271):

"...investments with active managers do not outperform passive benchmarks
because investors competitively supply funds to managers and there are
decreasing returns for managers in deploying their superior ability. Managers
increase the size of their funds, and their own compensation, to the point at
which expected returns to investors are competitive going forward."

From model in Table 6 column (1) with all publicly traded open-ended US mutual
funds \((n = 5635) \), we see that size has a positive impact on the returns \((\hat{\beta} = 0.38) \)
but a negative impact on sequence \((\hat{\lambda} = -2.26) \) incorporating yearly fixed effects. In
column (2), we include square terms of log of size and see there is a significant negative
impact \((\hat{\beta}_1 = 1.29, \hat{\beta}_2 = -0.1) \) meaning there is a convex relationship between returns
and size, but not so much for returns and sequence for public equity \((\hat{\lambda}_1 = -3.59) \).
However, if we accommodate for both year and fund specific fixed effects as in column
(4), sequence is no longer statistically significant. On the other hand size now has a
significant negative impact on returns \((\hat{\beta}_1 = -3.11) \). The results are not statistically
significant if non-linear terms are included possibly due to multicollinearity.
To further illustrate the implications of the point we also use an alternate model to verify or accommodate for persistence using past returns

\[return_{it} = \alpha_t + \delta_1(return_{it-1}) + \delta_2(return_{it-2}) + \varepsilon_{it}. \]

As these are yearly returns and we accommodate for survivorship bias by including several years of return, we do observe in column (8) some persistence of returns with only yearly fixed effects \((\hat{\delta}_1 = 0.08, \hat{\delta}_2 = -0.28, n = 1930) \). However, this becomes both economically and statistically significant, and negative with both year and fund specific fixed effects \((\hat{\delta}_1 = -0.28, \hat{\delta}_2 = -0.6, n = 1930 \) see Table 6 columns (7) – (10)). The best argument we can make is the one alluded to in the literature about the performance of managers is related to the amount of inflow and not necessarily the long term persistent return of the fund which becomes competitive with new fund inflow (Berk and Green, 2004). No such effect can be seen the private equity fund returns in Table 4 and Table 5.

The main focus of this paper is however different from the previous works on the determinants of persistence of returns or the effect of fund size or inflow on returns from private and public equity. We focus on the relative distributional structure, and hence risk-return structure of private and public equity markets in two panels. Kaplan and Schoar (2005, p. 1797) used proprietary data to calculate the Public Market Equivalent (PME) that:

"...compares an investment in a private equity fund to an investment in the S&P 500. We implement the PME calculation by investing (or discounting) all cash outflows of the fund at the total return to the S&P 500 and comparing the resulting value to the value of the cash inflows (all net of fees) to the fund invested (discounted) using the total return to the S&P 500. A fund with a PME greater than 1 outperformed the S&P 500 (net of all fees). We (not VE) perform the PME calculations using fund cash flows."

We use the internal rates of return published by Venture Economics to evaluate the true choice made by an investor between publicly traded mutual funds and placements in funds holding private equity. Hence, we look at the distributional comparison using pre-tax public mutual fund returns rather than benchmarks like S&P 500 index that cannot be traded by individual investors. We have already applied a Neyman smooth type test for the two sample context introduced by Bera, Ghosh and Xiao (2007) in the unadjusted case. We would continue that on the residuals or abnormal returns under
certain assumptions. First, the private and public equity returns independent. We have
used the public equity returns from 1996 to 2003, while the inception of the private equity
funds are set before 1996. Furthermore, we have used the year and fund specific fixed
effects from both private and public equity returns to adjust for the market conditions
in those years and for those funds. We have also seen that the number of publicly
traded funds in the database are much larger than the number of privately traded funds
that satisfies the condition given in Section 3 (also see Bera, Ghosh and Xiao, 2007 and
simulation study in the Appendix and Figure 9). We also performed a Hausman-type
test (not reported here) to verify that the time series and the cross-sectional terms can
be pooled separately in both public and private equity funds.

The probability density function (PDF) estimates and the empirical distribution
functions (EDF) of the residuals are plotted in Figures 5-8. It is evident from the plots
of the PDFs of the residuals of private and public equity regression models (1) and (3),
respectively, in Figure 5A using a yearly fixed effect that models have relatively few
intersections in the middle, and would suit the Smooth test framework. If however we
account for fixed effect for both year and fund specific effects as in Figure 5B, then
even that difference is partially accounted for. Graphically, the EDF plots in Figure
6A or 6B also do not show distinct first order stochastic dominance i.e., either private
or public equity consistently outperforming the other for all returns. We further test
whether components of private equity funds like Venture capital funds (VC) or Buyout
funds (LBO) show some consistent behavior with respect to the publicly traded mutual
funds. We find that adjusting for both year and fund specific fixed effects the regression
residuals are plotted in Figure 7A, and observe that the VC returns are similar in level to
publicly traded funds but there are some differences possibly in higher order moments.
Figure 8A also confirms the similarity of the EDFs, and no clear first order stochastic
dominance patterns. The LBO funds residuals PDF do show some deviation from the
PDF of the public equity residuals in Figure 7B, as does the EDF plot in Figure 8B.
However, we should bear in mind that the sample size for the LBO funds are substantially
smaller than the VC funds in the Venture Economics database. If we incorporate the
lagged dependent variables then distributions of residuals of private and public equity
models in (2) and (4), respectively, are indeed different as seen in Figure 5C, but there
is no pattern in the EDFs in Figure 6C. The difference between the PDFs seem more
pronounced for the Venture Capital funds (Figures 7C and 8C). One obvious reason for
this is the introduction for lagged dependent terms in the model might make the model
misspecified, and possibly autocorrelated. Having done the graphical analysis it is clear
that while there are some differences in the distribution of residuals or abnormal returns,
there could be differences in higher order moments that was not accounted for in the regression framework with essentially normally distributed residuals.

The results of the smooth test are reported in Tables 7 and 8. If we compare the models for the residuals of a public equity mutual fund with no yield \((n = 5635)\) using a simple model with no non-linear terms (3) and private equity fund with a simple model with similarly no non-linear term for size and sequence number in (1), accounting for yearly fixed effects, the distributions are statistically significantly different overall (with \(\tilde{\Psi}_6^2 = 50.86, m = 840\), see Table 7). The test also shows departures in the first, fourth and sixth order terms \((\tilde{u}_1^2 = 13.18, \tilde{u}_4^2 = 13.0 / \lambda \text{ and } \tilde{u}_6^2 = 20.75)\). The third order term \(\tilde{u}_3^2 = 3.53\) is marginally insignificant at 5% level. However, if we chose the recommended sample size of \(m = 518\) in the Appendix A so as to minimize finite sample size distortion of the test, it was significant overall \((\tilde{\Psi}_6^2 = 37.23)\) and also in the first and second order \((\tilde{u}_1^2 = 4.97 \text{ and } \tilde{u}_2^2 = 4.32)\) with p-values of 3% and 4%, respectively. To incorporate a second order term for findings of Kaplan and Schoar (2005), we indeed find the results are qualitatively similar with an overall \(\tilde{\Psi}_6^2 = 38.93\), with \(\tilde{u}_1^2 = 12.13, \tilde{u}_4^2 = 12.91\) and \(\tilde{u}_6^2 = 12.43\) indicating deviations in the first, fourth and sixth orthogonal moment directions. Selecting a sample of size \(n = 518\) also preserved the original results are 5% significance level. If we select only the liquidated private equity funds \((n = 463)\) that had an inception year before 1996 (see Table 7 line 5), there is a statistically stronger difference between residuals for the public and private equity returns \((\tilde{\Psi}_6^2 = 55.78)\) with departures in the directions of the second, fourth, fifth and sixth moments \((\tilde{u}_2^2 = 5.6, \tilde{u}_4^2 = 29.97, \tilde{u}_5^2 = 6.11 \text{ and } \tilde{u}_6^2 = 8.49)\) allowing for 5% probability of Type I Error. We have used the bigger data set of all private equity funds that had an inception year before 1996 as qualitatively the results were similar with the liquidated funds although the data was almost twice as large. We also reckoned that funds that started before 1996 would begin to show some tangible returns by their sixth year of existence.

Now however to account for the variability of the funds and incorporate differences across different fund types (for similar partnerships or funds) we can include both a year and fund/firm specific fixed effects. The results change dramatically. For the simple model there is still statistically significant difference between the private and public residuals \((\tilde{\Psi}_6^2 = 14.18)\) at 5% level but not at 1%. The almost the entire difference is accounted for by the fourth order term \((\tilde{u}_4^2 = 8.64)\) or departure in the direction of the term related to excess kurtosis. The result is replicated if we take a sample, though at a slightly higher significance level. These results confirm the findings in previous literature that there is hardly any significant difference between private and public equity returns.
once you account for size and sequence, and reputation of the fund. If we use the full model with non-linear terms we also find that the overall statistical significance of the model ($\hat{\Psi}_6^2 = 16.4$) is coming from the fourth order or kurtosis related term ($\hat{u}_4^2 = 8.98$). Even this difference washes away if we take a smaller sample so as to reduce distortion of the size of the test of significance.

If we turn our attention to the components of private equity individually like Venture Capital and Leveraged Buyout, the results are even more striking (see Table 8). Using the panel structure of the model with yearly and individual fund specific fixed effects, comparing the residuals of the no yield publicly traded mutual funds models and the residuals from the regression using only Venture Capital Funds that were started before 1996 there is no difference between the distributions ($\hat{\Psi}_6^2 = 6.54$, Table 8 line 1). If we only include the Venture Capital Funds that were already liquidated, the results stay the same ($\hat{\Psi}_6^2 = 11.64$, Table 8 line 2).

If on the other hand we use LBO funds, for all funds ($m = 206$) there is substantial difference between the distributions of the residuals of the public equity funds with no yield and the LBO funds ($\hat{\Psi}_6^2 = 64.97$) that was mainly owing to differences in the second, fourth and sixth moment directions ($\hat{u}_2^2 = 32.05$, $\hat{u}_4^2 = 13.35$ and $\hat{u}_6^2 = 18.99$). However, if we look at only the liquidated LBO funds ($m = 85$), there are no differences between the two residual distributions ($\hat{\Psi}_6^2 = 5.41$). This anomaly might be due to data reporting error before the liquidation of the fund or due to the small sample size involved.

Kaplan and Schoar (2005) also pointed out that private equity funds show evidence of persistence over different sequence numbers, unlike the public equity market where stock picking ability to beat the market in the short run is often assumed to be fortuitous. From regression results in Table 4 columns 9 and 10, we observe that indeed their is a significant positive relationship between both a single lagged return as well as two lags of pre-tax returns, all as expected ($R^2 = 0.27$). Returns for private equity show some degree of persistence in the data though the sample size is relatively small $m = 141$. Similar type of effect is also seen in Venture Capital Funds, but lack of data prevent us from corroborating that for LBO funds. If we turn to public equity with no yield and fit a model for the pretax returns with one and two previous periods returns we can fit a model similar to (4) without the dummy variable for VC funds. As compared to the private equity case whether with all private equity funds or a specific class of funds like the Venture Capital Funds, the estimation results are quite different. While we find more mean reversion rather than persistence in the significant negative coefficients of past returns using yearly fixed effects. We have used the residuals to run the BGX
test and found that there is significant differences between the residual distributions both for one and two lags in the model. For one lagged term the overall statistics is $\hat{\chi}^2_6 = 64.07$ that is chiefly caused by departures in the second, fourth and sixth orthogonal moment directions ($\hat{u}_2^2 = 15.86, \hat{u}_4^2 = 16.9$ and $\hat{u}_6^2 = 29.25$) with a sample of size $m = 275$. However, with a much smaller sample size of $m = 141$ we established that the overall $\hat{\chi}^2_6 = 75.94$ and principal directions of departure are $\hat{u}_2^2 = 43.42$, $\hat{u}_4^2 = 19.63$ and $\hat{u}_6^2 = 6.77$, all statistically significant at 5% level. One of the serious issues of using the lagged dependent structure is that to exactly identify the number of lags, as we might introduce impure heteroscedasticity or autocorrelation by not selecting the right person. This might be introduced as an artifact if the lag structure is misspecified (see Figures 5C-6C).

For Venture Capital Funds alone we run a model with only two lagged dependent variable and get an overall $\hat{\chi}^2_6 = 60.03$ though with a small sample size of $m = 106$. The departures of the distributions of the residuals after adjusting for fixed effects for the year between public equity funds and venture capital funds are coming from the second, fourth and sixth moment directions ($\hat{u}_2^2 = 28.05$, $\hat{u}_4^2 = 12.52$ and $\hat{u}_6^2 = 16.61$). However, this result might be affected by the small sample size of venture capital funds that has at least two previous returns data. The PDF and the EDF plots of public equity residuals and the private equity residuals in Figures 7C and 8C, respectively, also gives us an impression that the distributions might be different. We should also mention the caveat here, as before if the regression model is misspecified then including a lagged dependent variable might introduce dependence across the two groups as an artifact.

3.4 Robust Regression of Private and Public Equity Returns

The use of OLS type residuals have several technical and methodological issues that challenges the robustness of the results. First, it can be argued that presence of sample selection issues like survivorship bias both for public and private equity makes the inference based on unadjusted OLS residuals problematic (see Carhart et al., 2002, Cochrane, 2005). Second, model selection to identify non-linear dependence of returns on fund size and sequence might have issues with data-snooping and omitted variables bias (Lo and MacKinlay, 1989). Third, self reporting in case of cashflows for non-liquidated funds and actual allocated (not committed) fund size for private equity throws into the mix possible measurement error issues (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist and Richardson, 2003; Kaplan and Schoar, 2005). Fourth, the non-linear structure of the model and unknown error distribution specification for observational data makes
it necessary to look for more robust alternative to ordinary least squares. Finally, as investors and funds in private and public equity are inherently different hence not quite comparable we use fractile or covariate-rank regression methods to make the two returns comparable.

We use robust rank regression or fractile regression methods to address the above problems for effects of size of the fund in the regression models of returns is reported in Table 9 (see Bera and Ghosh, 2006, Ghosh, 2006 and references therein). If we define the conditional expectation of the return distribution \(Y \) given the fractile of the covariate \(X \) as
\[
m(x) = E[Y|X = x],
\]
and we have the rank or the CDF \(F(.) \) of \(X \) and error term \(\varepsilon \), our model is
\[
y_{it} = r(u_{it}) + \varepsilon_{it} = E(Y|F(X) = u_{it}) + \varepsilon_{it} \tag{5}
\]
\[
= E(Y|X = F^{-1}(u_{it})) + \varepsilon_{it} = m(F^{-1}(u_{it})) + \varepsilon_{it},
\]
where \(F^{-1}(u) = \inf \{ x | P(X \leq x) = u \} \) is the quantile function. We can use the linear function \(m(x) = m(x; \beta) = \beta_0 + \beta_1 x \) or keep it in the general form. This method is closely related to Quantile Regression method (see Koenker and Bassett, 1978).

For private equity funds the internal rate of return is affected positively by the rank of the fund size committed by the Limited Partner for funds that started before 1996 (here rank is the lowest for the smallest fund, column (1) \(m = 840 \) without any fixed effects. So bigger the fund size the higher is the internal rate of return, \textit{ceteris paribus}. It is also strongly influenced by the type of the fund, i.e. Venture Capital based funds have a higher return. Even when yearly fixed effects were accounted for in model in (2), the effects of the rank of fund size and Venture Capital status remained strongly statistically significant and positive. However, both the effects vanished when fixed effects for firms were also introduced. In economic terms as seen before the coefficient for the size of the fund became negative but was not statistically insignificant for funds with inception before 1996. If we looked at funds that were already liquidated by 2003 and started before 1996, we have a slight positive significance of the rank of fund size at 5%, and statistically insignificant type of the private equity firm in column (4). Though with less strong significance, the results for \(m = 463 \) liquidated firms and those that started before 1996 are in essence similar.

Venture capital fund internal rates of return by themselves also statistically depend strongly positively on the rank of fund size \((\hat{\beta}_1 = 0.0405) \) without any fixed effects and adjusted \(R^2 = 0.03 \). With the yearly fixed effects the results are essentially similar, both with sample size \(m = 610 \) (columns (9) and (10)). The results are not the same for
Buyouts funds that started before 1996, although the sample size \(m = 206 \) is smaller. There is no statistically significant effect on the internal rate of return if the yearly fixed effects were not considered. There was a slight significance at 10% level when yearly fixed effects are considered.

Public equity mutual fund returns when regressed on the rank of the size of the fund is similar, as there is a strong positive coefficient for larger funds without any fixed effects (Column (5)) with a sample size of \(n = 5635 \) and adjusted \(R^2 = 0.004 \). This implies that no matter whether yearly fixed effects are included in the model the rank of fund size does have an important role to play in determining the yearly returns (column (7), \(R^2 = 0.5 \)). If however, we included both year and fund specific fixed effects, the return is statistically significantly but negatively related to rank of fund size \((\hat{\beta}_1 = -0.0037) \) with 46% of the variation of returns explained by the variation of the rank of fund size and other fixed effect variables.

Our main emphasis in this paper has been to identify the moment directions of departure between the two distributions of private and public equity returns. In particular, we are interested in investigating how private equity returns are different from their public equity counterparts in a cross sectional sense (Table 10). We find with no adjustment for fixed effects overall smooth test indicates that the private and public equity returns after adjusting for the fractiles or ranks of the size are widely different for private and public equity \((\hat{\Psi}_{6}^2 = 567.35, \text{row 1}) \). The main directions of departure seems to be all moments except the first one \((\hat{u}_{1}^2 = 3.16, p\text{value} = 0.08, m = 840) \). The overall effect, however, reduces although still statistically significant once we take into account the fixed effect due to years \((\hat{\Psi}_{6}^2 = 47.99, m = 840, \text{row 2}) \). The main directions of departure of the residuals of the private equity model from the public equity after incorporating yearly fixed effects are towards the first, fourth and sixth moment directions \((\hat{u}_{1}^2 = 12.84, \hat{u}_{4}^2 = 18.3 \text{ and } \hat{u}_{6}^2 = 13.79) \). Further, if we include both fixed effects for years and firms (or funds), in the overall models the residuals from private and public equity are marginally significantly different at 5% level \((\hat{\Psi}_{6}^2 = 14.30, m = 840, \text{row 3}) \), that is almost entirely due to the fourth order term \(\hat{u}_{4}^2 = 8.38 \). The results are very similar if we only look at the Venture Capital funds by themselves. After adjusting for fixed effects for years alone (due to the lack of enough data points), the Venture Capital funds residuals are indeed different overall from public equity returns residuals \((\hat{\Psi}_{6}^2 = 53.67, m = 610, \text{row 4}) \). The residuals are different in the directions of the first, fourth and sixth moment directions \((\hat{u}_{1}^2 = 5.33, \hat{u}_{4}^2 = 25.49 \text{ and } \hat{u}_{6}^2 = 19.01) \) using a 5% significance level. As opposed to that, if we look at Buyout funds alone at 5% level of significance there is no difference between the residuals of buyout funds and the pub-
lic equity funds \(\left(\Psi_6^2 = 11.28, m = 206, \text{row } 5 \right) \). The small sample size of the buyout funds in the sample period we looked at might have been one of the reasons for such a statistically insignificant difference.

4 Comparing Venture Capital and Buyout Funds

While it is evident that private and public equity returns might be different, LPs (or investors) are often faced with a choice between different types of private equity. We focus our attention on Venture Capital and Buyout Funds. Our sample of funds from Thomson Reuters SDC Platinum database with inception before 1996 has 610 Venture Capital Funds and 206 Buyout Funds. Figure 2C and 3C suggests that the distributions of internal rates of return (that is now more comparable across different private equity funds rather than between private and public equity funds) for the two unadjusted return distributions are similar with few intersections. Hence we apply the BGX smooth test to both the full sample with inception before 1996 and a recommended sample size selected from the full sample of Buyout funds that has a smaller sample size (see Appendix A). We observe that from Table 1, the mean returns of both VC and Buyout funds are numerically similar (15.27) but the medians are distinctly different (18.7 and 12.17 respectively), there is a substantial difference in dispersion between the absolute terms (standard deviation of 41.59 and 22.32, respectively) and relative terms (Sharpe Ratio of 0.38 and 0.68, respectively). These suggests that there might be some differences in the higher order moments of the return distributions. Furthermore, from Table 1B, traditional tests like the Kolmogorov-Smirnov and Cramer-von Mises type tests also show that the two distributions are statistically marginally different at 0.1% level.

We run a smooth test on the unconditional return distribution of Venture Capital Funds and Buyout Funds and find that in the full sample the two are different statistically at 5% level \(\left(\hat{\Psi}_6^2 = 25.2 \right) \). The main sources of departure are in the direction of the first, third and fifth order terms \(\hat{u}_1^2 = 11.86, \hat{u}_3^2 = 5.66 \) and \(\hat{u}_5^2 = 5.1 \) that are all significant at 5% level. If under the recommendation of the BGX test to minimize size distortion of the asymptotic test we select a sample of size \(m = 137 \) (\(m = 22.5\% \) of \(n = 610 \)) of Buyout Funds, we get essentially a similar result with the directions of departure reducing to first and fifth moment directions \(\hat{u}_1^2 = 8.26, \hat{u}_5^2 = 6.49 \). We can infer from our results that the unadjusted returns from Venture Capital and Buyout funds are indeed different, and the main source of departure is coming from direction of location (and marginally, in the fifth order related terms).

Public and private equity are inherently different asset classes, hence the investors in
the two groups might also be different with varying appetite for and tolerance of risk. So it is often worthwhile to look at different types of private equity funds like venture capital and buyout type funds to see how they compare with each other. While this was already addressed in subsection 3.1, we would like to extend the discussion when we take into account the size of the total commitment by the Limited Partner or investor. However, since we have seen that on an average Buyouts are larger than Venture Capital funds, we want to account for the size effect nonparametrically (or account for size without imposing any linear parametric structure). We observe from Fractile Graphs Figure 3 (iv) – (vi) that for \(g = 10, 20 \) and \(50 \) there doesn’t seem to be clear evidence graphically to see that the two are different based on the fractiles of fund size. We performed the overall F-test of comparing \(g \) fractile means obtained using FGA techniques and the results are given in column 6 in Table FGA. We see that after accounting for size the two fractile graphs are indistinguishable for \(g = 10 \) and \(g = 20 \). Hence we can conclude that the returns of Venture Capital and Buyout funds are similar across all fractile groups. Hence, inherently investors of private equity are similar in their risk profile for average return conditional on the fractiles of the fund size. However, if we look at \(g = 50 \), we find that the VC and Buyout funds are distinctly different at 5% level. The main caveat of the conclusion is that the sample size of the buyout funds is not big enough to allow for 50 fractile groups, so the results in case with \(g = 50 \) might be misleading.

As we are looking at the internal rates of return of private equity firms that are partly based on self reported cash-flow data, it is probably more comparable with similarly reported internal rates of return rather than verifiable public equity returns. So to give a fair assessment within a similar asset class, we also compare returns to VC and Buyout funds using the residuals obtained from OLS with models similar to Kaplan and Schoar (2005). The results are reported in Table 8 rows 6-10. We first compare residuals from the estimation of model (1 without the dummy variable for VC) Venture Capital and Buyout funds separately. The residuals in the simple model with no non-linear terms in log of size or sequence, we see that the two residuals are marginally statistically different at 5% level (\(\hat{\Psi}^2_6 = 15.51, \text{p-value}=0.02 \)). The main sources of departure are towards the first and fifth moment directions (\(\hat{u}^2_1 = 7.56 \) and \(\hat{u}^2_5 = 7.17 \)). We observe that with fixed effects for years, the residuals from the returns regression with Venture Capital funds and those with Buyout funds using model (1) are statistically indistinguishable using the smooth test (\(\hat{\Psi}^2_6 = 10.24, \text{p-value} = 0.11 \)). Using the Kolmogorov-Smirnov (KS=0.08,p-value=0.16) the same result holds at 5% level of significance. Further, if we use the model with quadratic terms of log of size and sequence, there is no difference between the results with the simple model. However, if both fixed effects for year and
firms are used the two residual distributions are different ($\hat{\Psi}_6^2 = 76.27$) overall owing to the second, fourth and sixth moment directions ($\hat{u}_2^2 = 41.88$, $\hat{u}_4^2 = 14.26$ and $\hat{u}_6^2 = 18.74$). Given the small sample size of buyout funds, fixed effects for both year and firms might reduce the degrees of freedom substantially and could lead to misleading results.

The size of the fund seems to play a crucial role in the internal rate of return of the fund. If we estimate a simple regression model with the fund size as the only explanatory variable, we see that the residuals from the Venture Capital Funds and Buyout Funds are very similar and marginally significant at 5% level ($\hat{\Psi}_6^2 = 14.18$, see row 6 in Table 8) with only significant departures in the direction of the first moment directions ($\hat{u}_1^2 = 7.97$). If we look at a more robust alternative regression using the rank of size as a covariate in Table 10, with no fixed effects we see that the two residual distributions from regression on the rank of the size of the fund are marginally significant using 5% level ($\hat{\Psi}_6^2 = 12.97$, see Table 10 row 6). The main departure in the direction of location ($\hat{u}_1^2 = 7.67$). Using fixed effects for years once again we find that the distributions of residuals for Venture Capital and Buyout fund residuals are statistically not distinguishable at 5% level ($\hat{\Psi}_6^2 = 8.65$, p-value = 0.19). This implies that essentially the Buyout and Venture Capital funds residuals mainly differ in the first moment direction if size is not taken into account. The results imply that the size does play an important role in determining the returns on venture capital and buyout funds unlike what has been suggested in the literature (Metrick and Yasuda, 2007). In fact, after adjusting for the effects of fund size in a robust procedure, Buyout and Venture Capital fund return distributions are statistically similar using the smooth test.

5 Summary and Directions

Our findings help us explain how the return distributions are indeed different between private and public equity funds. However, the deviations between the two distributions reduces substantially when we take into account the size of the fund, and to a lesser extent the sequence. One of the major findings of this paper is that once year specific fixed effects are incorporated private and public equity returns are quite similar. This bolsters the argument in the literature that private equity returns are pro-cyclical with the business cycle and are positively correlated with public equity returns (Phalippou and Zollo, 2005). We also did find some non-linearity in fund size and return relationship, however, the sign of second order term was not as stable or statistically significant when fixed effect for year was included.

There is also strong evidence that private equity return is more persistent up to two
previous sequences. However, the surprising result was for public equity as well there is a positive association with last year’s returns for surviving funds that might be related to momentum based strategies. However, there is a strong negative relationship with second lagged term of returns. This could be due to the effect of inflow into the fund that waters down the return margin (Berk and Green, 2004).

We found evidence that Venture Capital Funds and Buyout (LBO) funds are inherently similar investment vehicles with a main source of departure in the first order or location term without any fixed effects. However, this also vanished when fixed effect for year was included. When we applied fractile (or rank) regression with and without fixed effects the same results were replicated. Hence the relationship between VC and LBO funds about their risk characteristic is pretty robust. The overall F-test with bootstrapped standard errors for the non-parametric FGA test also confirms that Venture Capital funds and LBO funds have similar risk exposure after adjusting for size.

Tests based on Fractile Graphs and bootstrapped standard errors provides an exciting non-parametric version of a distributional comparison test after adjusting for ranks of a conditioning variable like fund size. However, the power and size properties of such test hasn’t been extensively tested for dependent or panel data, so this is a possible direction of future research.

With this evidence in the data we can suggest what motivates an entrepreneur or a general partner in a private equity firm or a venture capitalist or owner of private equity to hold assets with higher risk is not just an increased probability of higher returns but an affinity to some function of higher order moments in the return distribution. From the perspective of a Limited Partner, such a measure reflects the true risk-return tradeoff that often determined by the peculiarities of the different types of private equity investment instruments and institutions and their risk appetite (Lerner, Schoar and Wongsunwai, 2007).
Table 4: OLS estimation results for regression of private equity fund internal rates of returns under different restrictions.

We look at data on mature funds with inception before 1996 (PE<96), data on private equity firms that are already liquidated (Liq<96), Size is the fund size and Seq is the sequence or round of the fund, VC is a dummy variable that takes 1 for a Venture Capital Fund and 0 otherwise. R_t is the IRR at time t. Fixed Effects for year (yr.) or funds (fnds).

<table>
<thead>
<tr>
<th></th>
<th>Private Equity Returns Static Regression Models</th>
<th>Lag Dep. Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (PE<96) (PE<96)</td>
<td>(2) (Liq<96) (Liq<96)</td>
</tr>
<tr>
<td>log(Size)</td>
<td>3.38***</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>(0.98)</td>
<td>(1.5)</td>
</tr>
<tr>
<td>log(Size)2</td>
<td>-0.96***</td>
<td>-0.82</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(1.23)</td>
</tr>
<tr>
<td>log(Seq)</td>
<td>2.03</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(1.33)</td>
<td>(2.12)</td>
</tr>
<tr>
<td>log(Seq)2</td>
<td>1.94</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>(1.89)</td>
<td>(3.23)</td>
</tr>
<tr>
<td>VC</td>
<td>6.79**</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>(2.85)</td>
<td>(4.43)</td>
</tr>
<tr>
<td>R_{t-1}</td>
<td>0.50***</td>
<td>0.78***</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>R_{t-2}</td>
<td>0.1***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td></td>
</tr>
<tr>
<td>F.E.</td>
<td>Adj. R^2</td>
<td>Yr</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Obs.</td>
<td>840</td>
<td>463</td>
</tr>
</tbody>
</table>

Table 4: Estimation Results for all Private Equity Funds
Table 5: OLS estimation results for regression of different private equity fund internal rates of return under different restrictions. We look at data on mature funds with inception before 1996 (<96), data on private equity firms that are already liquidated (Liq), Type of fund (VC or BO), Size is the fund size and Seq is the sequence or round of the fund, \(R_t \) is the IRR at time \(t \), F.E. Fixed Effects for year (yr.) or funds (fnds).

<table>
<thead>
<tr>
<th></th>
<th>Venture Capital (VC)</th>
<th>Buyout (LBO)</th>
<th>Lagged Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>(\log(\text{Size}))</td>
<td>1.00</td>
<td>2.17</td>
<td>-14.33</td>
</tr>
<tr>
<td>(\log(\text{Size})^2)</td>
<td>(3.08)</td>
<td>(1.84)</td>
<td>(16.22)</td>
</tr>
<tr>
<td>(\log(\text{Seq}))</td>
<td>-21.52*</td>
<td>-1.18</td>
<td>-23.71*</td>
</tr>
<tr>
<td>(\log(\text{Seq})^2)</td>
<td>(13.2)</td>
<td>(2.57)</td>
<td>(13.24)</td>
</tr>
<tr>
<td>(R_{t-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{t-2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.E.</td>
<td>Yr,Frms</td>
<td>Yr</td>
<td>Yr,Frms</td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Obs.</td>
<td>610</td>
<td>364</td>
<td>610</td>
</tr>
</tbody>
</table>

Table 5: Estimation Results for Venture Capital and Buyout Funds
Table 6: OLS estimation results for regression of different public equity fund annual returns for mutual funds from Morningstar Principia database January returns with zero dividend yield, 1996-2003. Size is the fund size or net asset value (in $MM) and Seq is the sequence or the year of existence of the fund in the sample, R_t is the return at time t, F.E. Fixed Effects for year (yr.) or funds (fnds).

<table>
<thead>
<tr>
<th></th>
<th>Public Equity Fund Returns: Static Models</th>
<th>Lagged Dependent Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)</td>
<td></td>
</tr>
<tr>
<td>log(Size)</td>
<td>0.38*** 1.29*** 1.2*** -3.11*** -1.07 -1.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.13) (0.46) (.47) (1.1) (2.49) (2.52)</td>
<td></td>
</tr>
<tr>
<td>log(Size)2</td>
<td>-0.1** -0.11*** -0.23 -.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.05) (0.05) (23) (23)</td>
<td></td>
</tr>
<tr>
<td>log(Seq)</td>
<td>-2.26*** -3.59*** -3.79 -3.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.47) (1.36) (2.76) (2.7)</td>
<td></td>
</tr>
<tr>
<td>log(Seq)2</td>
<td>0.94 5.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.8) (3.3)</td>
<td></td>
</tr>
<tr>
<td>R_{t-1}</td>
<td>0.07*** 0.08*** -0.06*** -0.28***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02) (0.02) (0.03) (0.05)</td>
<td></td>
</tr>
<tr>
<td>R_{t-2}</td>
<td>-0.28*** -0.6***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.017) (.06)</td>
<td></td>
</tr>
<tr>
<td>F.E.</td>
<td>Yr Yr Yr Yr Yr,Fnds Yr,Fnds Yr,Fnds Yr,Fnds</td>
<td></td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.51 0.51 0.5 0.46 0.46 0.46 0.51 0.61 0.51 0.68</td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>5635 5635 5635 5635 5635 5635 3376 1930 3376 1930</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: BGX Smooth Test and p-values for the residuals for public and private equity.*** 1%, ** 5%, * 10%.

<table>
<thead>
<tr>
<th>Public-Private</th>
<th>$\hat{\psi}_0^2$ ($\hat{\chi}_0^2$)</th>
<th>$\hat{\psi}_1^2$ ($\hat{\chi}_1^2$)</th>
<th>$\hat{\psi}_2^2$ ($\hat{\chi}_2^2$)</th>
<th>$\hat{\psi}_3^2$ ($\hat{\chi}_3^2$)</th>
<th>$\hat{\psi}_4^2$ ($\hat{\chi}_4^2$)</th>
<th>$\hat{\psi}_5^2$ ($\hat{\chi}_5^2$)</th>
<th>$\hat{\psi}_6^2$ ($\hat{\chi}_6^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Yield-Pre96, simple FE(yr.)</td>
<td>50.88***</td>
<td>13.18***</td>
<td>0.05</td>
<td>3.53*</td>
<td>13.01***</td>
<td>0.39</td>
<td>20.75***</td>
</tr>
<tr>
<td>(1) - (1) (n = 5635, m = 840)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.94)</td>
<td>(0.06)</td>
<td>(0.00)</td>
<td>(0.53)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Sample Pre96, simple FE(Yr)</td>
<td>37.23***</td>
<td>4.97**</td>
<td>4.32**</td>
<td>0.85</td>
<td>10.28***</td>
<td>0.01</td>
<td>16.81***</td>
</tr>
<tr>
<td>(n = 5635, m = 518)</td>
<td>(0.00)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.36)</td>
<td>(0.00)</td>
<td>(0.91)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Pre96, full FE(yr.)</td>
<td>26.93***</td>
<td>12.13***</td>
<td>1.06</td>
<td>0.85</td>
<td>12.91***</td>
<td>0.01</td>
<td>12.43***</td>
</tr>
<tr>
<td>(2) - (3) (m = 5635, n = 840)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.80)</td>
<td>(0.32)</td>
<td>(0.00)</td>
<td>(0.53)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Sample Pre96, full FE(yr.)</td>
<td>13.82***</td>
<td>4.51**</td>
<td>3.13*</td>
<td>6.3**</td>
<td>2.98*</td>
<td>7.16***</td>
<td></td>
</tr>
<tr>
<td>(n = 5635, m = 518)</td>
<td>(0.00)</td>
<td>(0.03)</td>
<td>(0.88)</td>
<td>(0.08)</td>
<td>(0.01)</td>
<td>(0.08)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>No Yield-Pre96 liquidated, full FE(yr.)</td>
<td>55.78***</td>
<td>3.29*</td>
<td>5.60*</td>
<td>2.31</td>
<td>29.97***</td>
<td>6.11*</td>
<td>8.49***</td>
</tr>
<tr>
<td>(n = 5635, m = 463)</td>
<td>(0.00)</td>
<td>(0.07)</td>
<td>(0.02)</td>
<td>(0.12)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Pre96, simple FE(yr.,firms)</td>
<td>14.18***</td>
<td>0.03</td>
<td>1.22</td>
<td>0.00</td>
<td>8.64***</td>
<td>0.25</td>
<td>4.04***</td>
</tr>
<tr>
<td>(4) - (4) (n = 5635, m = 840)</td>
<td>(0.03)</td>
<td>(0.85)</td>
<td>(0.27)</td>
<td>(0.98)</td>
<td>(0.00)</td>
<td>(0.62)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>No Yield-Pre96, sample simple FE(yr.,firms)</td>
<td>2.23*</td>
<td>0.37</td>
<td>0.21</td>
<td>0.24</td>
<td>3.09*</td>
<td>1.04</td>
<td>6.35**</td>
</tr>
<tr>
<td>(n = 5635, m = 518)</td>
<td>(0.06)</td>
<td>(0.24)</td>
<td>(0.65)</td>
<td>(0.62)</td>
<td>(0.08)</td>
<td>(0.31)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>No Yield-Pre96, full FE(yr.,firms)</td>
<td>16.4***</td>
<td>0.05</td>
<td>1.43</td>
<td>0.02</td>
<td>8.98***</td>
<td>0.22</td>
<td>5.69**</td>
</tr>
<tr>
<td>(5) - (6) (n = 5635, m = 840)</td>
<td>(0.01)</td>
<td>(0.83)</td>
<td>(0.23)</td>
<td>(0.88)</td>
<td>(0.00)</td>
<td>(0.64)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>No Yield-Pre96, sample full FE(yr.,firms)</td>
<td>38.93***</td>
<td>12.13***</td>
<td>1.06</td>
<td>0.85</td>
<td>12.91***</td>
<td>0.01</td>
<td>12.43***</td>
</tr>
<tr>
<td>(n = 5635, m = 518)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.80)</td>
<td>(0.32)</td>
<td>(0.00)</td>
<td>(0.53)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Pre96, on 1 lagged returns, FE(yr.)</td>
<td>41.07***</td>
<td>17.86***</td>
<td>0.21</td>
<td>16.93***</td>
<td>0.08</td>
<td>29.25***</td>
<td></td>
</tr>
<tr>
<td>(n = 3376, m = 275)</td>
<td>(0.00)</td>
<td>(0.18)</td>
<td>(0.00)</td>
<td>(0.65)</td>
<td>(0.00)</td>
<td>(0.78)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Pre96, on 2 lagged returns, FE(yr.)</td>
<td>75.94***</td>
<td>2.82*</td>
<td>43.42***</td>
<td>0.299</td>
<td>19.63***</td>
<td>2.98*</td>
<td>6.77**</td>
</tr>
<tr>
<td>(n = 1930, m = 141)</td>
<td>(0.00)</td>
<td>(0.09)</td>
<td>(0.00)</td>
<td>(0.58)</td>
<td>(0.00)</td>
<td>(0.08)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>
Table 8: BGX Smooth Test and p-values for the OLS residuals for the public and private equity.*** 1%, **5%, *10%.

<table>
<thead>
<tr>
<th>Public-Different Private Equity</th>
<th>$\Psi_0^2 (\sim \chi_0^2)$</th>
<th>$\hat{u}_1^2 (\sim \chi_1^2)$</th>
<th>$\hat{u}_2^2 (\sim \chi_2^2)$</th>
<th>$\hat{u}_3^2 (\sim \chi_3^2)$</th>
<th>$\hat{u}_4^2 (\sim \chi_4^2)$</th>
<th>$\hat{u}_5^2 (\sim \chi_5^2)$</th>
<th>$\hat{u}_6^2 (\sim \chi_6^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Yield-Pre96, VC FE(yr., funds)</td>
<td>6.54</td>
<td>0.00</td>
<td>1.69</td>
<td>0.23</td>
<td>2.92*</td>
<td>0.25</td>
<td>1.45</td>
</tr>
<tr>
<td>(5) - (3) ($n = 5635, m = 610$)</td>
<td>(0.37)</td>
<td>(0.96)</td>
<td>(0.19)</td>
<td>(0.63)</td>
<td>(0.09)</td>
<td>(0.62)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>No-yield - Pre96 Liquidated, VC FE(Yr, funds)</td>
<td>11.64*</td>
<td>0.08</td>
<td>2.16</td>
<td>0.21</td>
<td>1.78</td>
<td>3.61*</td>
<td>3.78*</td>
</tr>
<tr>
<td>(5) - (4) ($n = 5635, n_1 = 364$)</td>
<td>(0.07)</td>
<td>(0.77)</td>
<td>(0.64)</td>
<td>(0.36)</td>
<td>(0.18)</td>
<td>(0.06)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>No Yield-Pre96-Liquidated, Buyout FE(yr.)</td>
<td>5.41</td>
<td>0.04</td>
<td>0.04</td>
<td>0.23</td>
<td>4.06**</td>
<td>0.13</td>
<td>0.9</td>
</tr>
<tr>
<td>(5) - (8) ($n = 5635, m = 85$)</td>
<td>(0.49)</td>
<td>(0.85)</td>
<td>(0.84)</td>
<td>(0.63)</td>
<td>(0.04)</td>
<td>(0.71)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>No Yield-Pre96 past two returns, FE(yr.)</td>
<td>60.03***</td>
<td>1.55</td>
<td>28.05***</td>
<td>1.31</td>
<td>12.52***</td>
<td>0.00</td>
<td>16.61***</td>
</tr>
<tr>
<td>(8) - (10) ($n = 5635, m = 102$)</td>
<td>(0.00)</td>
<td>(0.21)</td>
<td>(0.00)</td>
<td>(0.25)</td>
<td>(0.00)</td>
<td>(0.97)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>VC-Buyout-pre 1996 only size no FE</td>
<td>14.28**</td>
<td>7.97***</td>
<td>0.6</td>
<td>1.5</td>
<td>0.2</td>
<td>3.98*</td>
<td>0.03</td>
</tr>
<tr>
<td>($n = 610, m = 206$)</td>
<td>(0.03)</td>
<td>(0.00)</td>
<td>(0.04)</td>
<td>(0.22)</td>
<td>(0.66)</td>
<td>(0.05)</td>
<td>(0.86)</td>
</tr>
<tr>
<td>VC-Buyout-pre 1996 simple no FE</td>
<td>15.51**</td>
<td>7.56**</td>
<td>0.16</td>
<td>0.55</td>
<td>0.01</td>
<td>7.17**</td>
<td>0.06</td>
</tr>
<tr>
<td>($n = 610, m = 206$)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.69)</td>
<td>(0.46)</td>
<td>(0.94)</td>
<td>(0.01)</td>
<td>(0.8)</td>
</tr>
<tr>
<td>VC-Buyout-pre 1996 simple FE (yr)</td>
<td>10.24</td>
<td>2.00</td>
<td>0.6</td>
<td>1.82</td>
<td>2.18</td>
<td>1.62</td>
<td>2.02</td>
</tr>
<tr>
<td>($n = 610, m = 206$)</td>
<td>(0.11)</td>
<td>(0.15)</td>
<td>(0.43)</td>
<td>(0.18)</td>
<td>(0.14)</td>
<td>(0.20)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>VC-Buyout-pre 1996 full FE(yr)</td>
<td>10.3</td>
<td>1.96</td>
<td>0.67</td>
<td>2.26</td>
<td>1.54</td>
<td>1.91</td>
<td>1.97</td>
</tr>
<tr>
<td>($n = 610, m = 206$)</td>
<td>(0.11)</td>
<td>(0.16)</td>
<td>(0.41)</td>
<td>(0.13)</td>
<td>(0.21)</td>
<td>(0.17)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>VC-Buyout-pre 1996 full FE(yr,funds)</td>
<td>76.27***</td>
<td>0.00</td>
<td>41.88***</td>
<td>1.24</td>
<td>14.26***</td>
<td>0.13</td>
<td>18.74***</td>
</tr>
<tr>
<td>($n = 610, m = 206$)</td>
<td>(0.00)</td>
<td>(0.99)</td>
<td>(0.00)</td>
<td>(0.26)</td>
<td>(0.00)</td>
<td>(0.71)</td>
<td>(0.00)</td>
</tr>
</tbody>
</table>

Table 9: OLS estimation results for regression of different private equity fund internal rates of return from SDC-Platinum
and Thomson Banker databases. Rank$_{Size}$ is the rank of fund size with lowest size having rank 1 and VC is Venture capital status, F.E. Fixed Effects for year (yr.) or funds (fnds).*** 1%, ** 5%, * 10%.

<table>
<thead>
<tr>
<th></th>
<th>Private</th>
<th></th>
<th></th>
<th></th>
<th>Public</th>
<th></th>
<th></th>
<th></th>
<th>VC</th>
<th></th>
<th></th>
<th>LBO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
<td>(12)</td>
</tr>
<tr>
<td></td>
<td>(PE<96)</td>
<td>(PE<96)</td>
<td>(PE<96)</td>
<td>(liq)</td>
<td>(>96)</td>
<td>(>96)</td>
<td>(>96)</td>
<td>(>96)</td>
<td>(<96)</td>
<td>(<96)</td>
<td>(<96)</td>
<td>(<96)</td>
</tr>
<tr>
<td>Rank$_{size}$</td>
<td>0.029***</td>
<td>0.022***</td>
<td>-0.004</td>
<td>0.031*</td>
<td>0.001***</td>
<td>0.0002</td>
<td>-0.004**</td>
<td>0.041***</td>
<td>0.025***</td>
<td>0.025</td>
<td>0.046*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.013)</td>
<td>(0.017)</td>
<td>(0.0002)</td>
<td>(0.0001)</td>
<td>(0.001)</td>
<td>(0.011)</td>
<td>(0.009)</td>
<td>(0.031)</td>
<td>(0.027)</td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>9.266***</td>
<td>7.983***</td>
<td>3.566</td>
<td>2.343</td>
<td>(2.872)</td>
<td>(2.95)</td>
<td>(8.956)</td>
<td>(4.043)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.E.</td>
<td>None</td>
<td>Yr</td>
<td>Yr, Frms</td>
<td>Yr</td>
<td>None</td>
<td>Yr</td>
<td>Yr, Frms</td>
<td>None</td>
<td>Yr</td>
<td>None</td>
<td>Yr</td>
<td></td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.03</td>
<td>0.06</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.004</td>
<td>0.5</td>
<td>0.5</td>
<td>0.46</td>
<td>0.03</td>
<td>0.07</td>
<td>0.004</td>
<td>0.151</td>
</tr>
<tr>
<td>Obs.</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>463</td>
<td>5635</td>
<td>5635</td>
<td>5635</td>
<td>5635</td>
<td>610</td>
<td>610</td>
<td>206</td>
<td>206</td>
</tr>
</tbody>
</table>
Table 10: BGX Smooth Test of Goodness-of-Fit and corresponding p-values for the rank regression residuals returns for the full sample of public and private equity with corresponding sample sizes for the bigger \((n)\) sample and the smaller \((m)\) sample sizes.*** 1%, ** 5%, * 10%.

<table>
<thead>
<tr>
<th>Private Equity residuals for rank regression</th>
<th>(\Psi_6^2 (\sim \chi_6^2))</th>
<th>(\hat{u}_1^2 (\sim \chi_1^2))</th>
<th>(\hat{u}_2^2 (\sim \chi_1^2))</th>
<th>(\hat{u}_3^2 (\sim \chi_1^2))</th>
<th>(\hat{u}_4^2 (\sim \chi_1^2))</th>
<th>(\hat{u}_5^2 (\sim \chi_1^2))</th>
<th>(\hat{u}_6^2 (\sim \chi_1^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Yield-Pre96 residuals, No FE</td>
<td>567.35***</td>
<td>3.16*</td>
<td>254.44***</td>
<td>79.79***</td>
<td>169.6***</td>
<td>53.87***</td>
<td>6.49**</td>
</tr>
<tr>
<td>(5) - (1) ((n = 5635, m = 840))</td>
<td>(0.00)</td>
<td>(0.08)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>No-yield - Pre96, FE(Yr)</td>
<td>47.99***</td>
<td>12.84***</td>
<td>0.01</td>
<td>2.73</td>
<td>18.3***</td>
<td>0.32</td>
<td>13.79***</td>
</tr>
<tr>
<td>(7) - (2) ((n = 5635, m = 840))</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.91)</td>
<td>(0.1)</td>
<td>(0.00)</td>
<td>(0.57)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Pre96, FE(yr., funds)</td>
<td>14.30**</td>
<td>0.198</td>
<td>2.15</td>
<td>0.22</td>
<td>8.38***</td>
<td>0.00</td>
<td>3.349*</td>
</tr>
<tr>
<td>(8) - (3) ((n = 5635, m = 840))</td>
<td>(0.03)</td>
<td>(0.66)</td>
<td>(0.14)</td>
<td>(0.64)</td>
<td>(0.00)</td>
<td>(0.97)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>No Yield-Pre96, VC FE(yr.)</td>
<td>53.67***</td>
<td>5.33**</td>
<td>0.05</td>
<td>3.75*</td>
<td>25.49***</td>
<td>0.04</td>
<td>19.01***</td>
</tr>
<tr>
<td>(7) - (10) ((n = 5635, m = 610))</td>
<td>(0.00)</td>
<td>(0.02)</td>
<td>(0.81)</td>
<td>(0.05)</td>
<td>(0.00)</td>
<td>(0.84)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>No Yield-Pre96, LBO FE(yr.)</td>
<td>11.28*</td>
<td>0.00</td>
<td>1.63</td>
<td>0.11</td>
<td>0.47</td>
<td>0.00</td>
<td>9.07***</td>
</tr>
<tr>
<td>(7) - (12) ((n = 5635, m = 206))</td>
<td>(0.08)</td>
<td>(0.96)</td>
<td>(0.2)</td>
<td>(0.74)</td>
<td>(0.49)</td>
<td>(0.98)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Venture Capital-Buyout Funds no FE</td>
<td>12.97**</td>
<td>7.67***</td>
<td>0.44</td>
<td>1.28</td>
<td>0.08</td>
<td>3.43*</td>
<td>0.07</td>
</tr>
<tr>
<td>(10) - (12) ((n = 610, m = 206))</td>
<td>(0.04)</td>
<td>(0.01)</td>
<td>(0.51)</td>
<td>(0.26)</td>
<td>(0.78)</td>
<td>(0.06)</td>
<td>(0.79)</td>
</tr>
<tr>
<td>Venture Capital-Buyout Funds FE (yr)</td>
<td>8.65</td>
<td>2.07</td>
<td>0.55</td>
<td>1.22</td>
<td>2.2</td>
<td>0.97</td>
<td>1.63</td>
</tr>
<tr>
<td>(10) - (12) ((n = 610, m = 206))</td>
<td>(0.19)</td>
<td>(0.15)</td>
<td>(0.46)</td>
<td>(0.27)</td>
<td>(0.14)</td>
<td>(0.32)</td>
<td>(0.2)</td>
</tr>
</tbody>
</table>
Figure 5-6: Kernel density functions (5A-5C) and Empirical Distribution Functions (6A-6C) of annual public equity funds returns residuals (1996-2002) and private equity internal rates of returns residuals (inception before 1996).
Figure 7-8: Kernel density functions (7A-7C) and Empirical Distribution Functions (8A-8C) of annual public equity funds returns residuals (1996-2002) and different private equity internal rates of returns residuals (inception before 1996). All with fixed effect for years.

Figure 7A: VC Residuals.

Figure 7B: LBO residuals.

Figure 7C: Lagged VC residuals.

Figure 7D: LBO residuals (liq.)

Figure 8A: EDF of VC residuals.

Figure 8B: EDF of VC lagged residuals.

Figure 8C: EDF of VC lagged residuals (liq.)
References

7 Appendix B

7.1 Smooth Test for Comparing Distributions

For performing this test of comparison of distributions of we use the two sample version of smooth test procedure as proposed in Bera, Ghosh and Xiao (2012). Neyman’s smooth test for \(H_0: F = F_0 \) was for the one sample case with completely specified distribution under null hypothesis \(H_0 : f (x) \) is the true PDF (for a review, see Bera and Ghosh, 2002). This is equivalent to testing \(H_0 : y = F (x) = \int_{-\infty}^{x} f (u) du \sim U (0, 1) \). Neyman
considered the following smooth alternative to the uniform density:

\[h(y) = C(\theta) \exp \left(\sum_{j=1}^{k} \theta_j \pi_j(y) \right) \]

(6)

\(\pi_j(.) \) are orthogonal normalized Legendre polynomials. For \(H_0 : \theta_1 = \theta_2 = \cdots = \theta_k = 0 \) has a test statistic

\[\Psi_k^2 = \sum_{j=1}^{k} \frac{1}{n} \left[\sum_{i=1}^{n} \pi_j(y_i) \right]^2 \sim \chi_k^2(0) \text{ under } H_0. \]

If we take the problem of testing \(H_0 : F = G \). We need to modify the original smooth test since both \(F \) and \(G \) are unknown. If \(F(.) \) were known, we can construct a new random variable \(Z_j = F(Y_j), j = 1, 2, \ldots, m. \)

The CDF of \(Z \) is given by

\[H(z) = \Pr(Z \leq z) = \Pr(F(Y) \leq z) = G(F^{-1}(z)) = G(Q(z)) \]

where \(Q(z) = F^{-1}(z) \) is the quantile function of \(Z \).

The PDF of \(Z \) is given by

\[
\begin{align*}
 h(z) &= \frac{d}{dz} H(z) = g(F^{-1}(z)) \frac{d}{dz} F^{-1}(z) \\
 &= g(F^{-1}(z)) \frac{1}{f(F^{-1}(z))} \\
 &= \frac{g(Q(z))}{f(Q(z))}, \quad 0 < z < 1.
\end{align*}
\]

(7)

The main problem of comparing two distributions is to find a suitable measure of distance or norm between two distribution functions, i.e. to say, for any \(x \in (-\infty, \infty), \)

\[||G(x) - F(x)|| \]

If a density function exists over the support of \(F \) and \(G \), then for any \(t \in (0, 1) \) this problem to be equivalent to the distance

\[|G \circ F^{-1}(t) - t|. \]

51
Under $H_0 : G = F, G \circ F^{-1} (t) = t$. In fact, the $h (z)$ in (7) is the corresponding PDF for the distribution function $G \circ F^{-1}$ defined over $(0, 1)$. The PDF $h (z)$ is a ratio of two densities; and itself is a valid density function. Therefore, we will call it the Ratio Density Function (RDF) (Bera, Ghosh and Xiao, 2005).

When $H_0 : F = G$ is true (i.e. $f = g$) then from (7), $h (z) = \frac{g(Q(x))}{f(Q(x))} = 1, 0 < z < 1$. Z has the Uniform density in $(0, 1)$. That means irrespective of what F and G are, the two-sample testing problems can be converted into testing only one kind of hypothesis; namely, uniformity of a transformed random variable.

For the two sample case with unknown F and G the Smooth test statistic is

$$\Psi_k^2 = \sum_{i=1}^{k} u_i^2, \quad u_i = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \pi_l(z_j), \quad l = 1, 2, ..., k$$

$$z_j = F(y_j) = \int_{-\infty}^{y_j} f(\omega) \, d\omega, \quad j = 1, 2, ..., m.$$

Under $H_0 : F = G, \Psi_k^2 \overset{D}{\rightarrow} \chi_k^2$.

The test has k components. Each component provides information regarding specific departures from $H_0 : F = G$.

However, in practice $F(\cdot)$ is unknown. We use the Empirical Distribution Function (EDF),

$$F_n (x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x), \quad \hat{z}_j = F_n(y_j)$$

$$\hat{\Psi}_k^2 = \frac{1}{m} \left(\sum_{j=1}^{m} \pi_l(\hat{z}_j) \right)^2$$

The following two theorems [for proof and details see Bera, Ghosh and Xiao (2004)] provide some restrictions on relative sample sizes for consistent asymptotic χ^2 distribution of the test statistic, and also to minimize size distortion of the two sample smooth test of comparing two distributions.

Theorem 1 If $m \log \log n \rightarrow 0$ as $m, n \rightarrow \infty$ then $\hat{\Psi}_k^2 - \Psi_k^2 = o_p (1)$.

Proof. See Bera, Ghosh, Xiao (2012) \blacksquare

Theorem 2 The optimal relative magnitude of m and n for minimum size distortion is given by $m = O (\sqrt{n})$.

52
\textbf{Proof.} See Bera, Ghosh, Xiao (2012) ■

7.2 Fractile Graphical Analysis (Mahalanobis, 1960, Bera and Ghosh, 2006)

Following the notation of Bera and Ghosh (2006), we divide the data into \(m \) groups of size \(g \) each i.e. \(n = mg \). The group means of the variables ranked with respect to \(X \) are

\[
u_i = \frac{1}{m} \sum_{r=(i-1)m+1}^{im} x_{i(r)}, \quad i = 1, 2, \ldots, g
\]

(8)

\[
v_i = \frac{1}{m} \sum_{r=(i-1)m+1}^{im} y_{i[r]}, \quad i = 1, 2, \ldots, g.
\]

(9)

Samples \((x_1^1, y_1^1), (x_2^1, y_2^1), \ldots, (x_1^n, y_1^n)\) and \((x_2^1, y_2^1), (x_3^2, y_3^2), \ldots, (x_n^2, y_n^2)\), are independently drawn from population \(P_{12}\).

Let \(G_1, G_2\) and \(G_{12}\) be the plots of the \(g \) group means \((v_1^1, v_2^1, \ldots, v_g^1)\), \((v_1^2, v_2^2, \ldots, v_g^2)\) and \((v_{12}^1, v_{12}^2, \ldots, v_{12}^g)\) against the group ranks \(1/g\) through 1. Also define, for population \(P_{34}\), \(G_3, G_4\) and \(G_{34}\) be the plots of the group means \((v_1^3, v_2^3, \ldots, v_g^3)\), \((v_1^4, v_2^4, \ldots, v_g^4)\) and \((v_{34}^1, v_{34}^2, \ldots, v_{34}^g)\) against the covariate group ranks. Define \(A_{12}\) be the error area bounded by fractile graphs \(G^1\) and \(G^2\) between the rank points of the covariate \(x\), 1 and \(g\); \(A_{34}\) be the error area bounded by graphs \(G^3\) and \(G^4\) between the rank points of the covariate \(x\), 1 and \(g\); and \(A_*\) be the separation area bounded between the combined graphs \(G_{12}\) and \(G_{34}\).

One way of addressing the problem of the difference between two fractile graphs \(G^1\) and \(G^2\) is to look at a norm in a \(g\)-dimensional Euclidean space. The \(L_2\)-norm can be defined as on way of addressing the problem of the difference between two fractile graphs \(G^1\) and \(G^2\) to look at a norm in a \(g\)-dimensional Euclidean space. The \(L_2\)-norm can be defined as

\[
\Delta_{12} = \|G^1 - G^2\| \\
= \|v_1^1 - v_1^2, v_2^1 - v_2^2, \ldots, v_g^1 - v_g^2\| \\
= \sqrt{w_{1(12)}^2 + w_{2(12)}^2 + \ldots + w_{g(12)}^2}
\]

(10)

Similarly, define \(\Delta_{34} = \sqrt{w_{1(34)}^2 + w_{2(34)}^2 + \ldots + w_{g(34)}^2}\) between \(G^3\) and \(G^4\), and finally, \(\Delta_*\) between the combined graphs \(G_{12}\) and \(G_{34}\).

Suppose, \(B = ((b_{ij}))\) is a positive definite matrix like the covariance matrix, then a
more general class of distance measure is

\[\Gamma_{12}^2 = \sum_{i=1}^{g} \sum_{j=1}^{g} w_i(12) w_j(12) b_{ij} = W_{(12)}^T BW_{(12)}. \]

(11)

Now, extending the result with size \(m \) fractile groups \(m \Delta_{in}^2 \) converges to a mixture of \(\chi^2 \) variates where \(\Delta_{in} \) is the error area of fractile graph \(i = 1, 2 \). If \(B \) is the inverse of the covariance matrix of \(W \), \(m \Gamma_{1n}^2 \) converges to \(\chi^2 \) with \(g \) degrees of freedom. Furthermore if \(m \Delta_{in}^2 , i = 1, 2 \) and \(2m \Delta_{in}^2 \) are asymptotically independent,

\[\frac{2\Delta_{in}^2}{(\Delta_{in}^2 + \Delta_{2n}^2)} \rightarrow \text{Ratio of mixture of } \chi^2. \]

Similarly, for a suitable normalization matrix \(B \), like the inverse of the bootstrapped variance covariance matrix,

\[\frac{2\Gamma_{in}^2}{(\Gamma_{1n}^2 + \Gamma_{2n}^2)} \rightarrow F_{g,2g}. \]

7.3 Appendix B (Sample Size Selection)

This appendix is following the method described in Bera, Ghosh and Xiao (2007). For finite sample, for each fixed \(n_2 \), we may divide the index set \(\mathcal{N} = \{1, \ldots, n\} \) into two mutually exclusive and exhaustive (large) sets \(\mathcal{N}_1 \) and \(\mathcal{N}_2 \) with cardinalities \(n_1 \) and \(n_2 \), where \(n_1 + n_2 = n \), and define the training set

\[\mathcal{Z}_1 = \{(X_j), j \in \mathcal{N}_1\} \]

and the testing set

\[\mathcal{Z}_2 = \{(X_j), j \in \mathcal{N}_2\}. \]

Then we can estimate \(F(\cdot) \) using data \(\mathcal{Z}_1 \) and construct

\[F_{n_1} (X_i) = \frac{1}{n_1} \sum_{j \in \mathcal{N}_1} I (X_j \leq X_i) , \text{ for } i \in \mathcal{N}_2. \]

\(\mathcal{Z}_1 \) and \(\mathcal{Z}_2 \) are from the same distribution \(F \), \(F(X_i) (i \in \mathcal{N}_2) \) are uniformly distributed and \(F_{n_1} (X_i) \) provides an estimator for the uniform distribution, we may compare it with the \(CDF \) of standard uniform, say, using some criterion function

\[\frac{1}{n_2} \sum_{i \in \mathcal{N}_2} d(F_{n_1} (X_i), U[0,1]) \]

54
and take average over R replications

$$\frac{1}{R} \sum_{r=1}^{R} \left[\frac{1}{n_2} \sum_{i \in N_2} d(F_{n_1}^{-1}(X_i), U[0,1]) \right]$$

For each value of n_2, we can calculate the above criterion function. We may choose n_2 that minimizes the above criterion based on an Anderson-Darling type distance measure

![Plot of criterion function to choose finite sample size](image)

Figure 9: Plot of criterion function to choose finite sample size

Finally, we choose

$$m = \frac{n_2}{n_1} \times n.$$

The above method may have applications in more general settings. This is a cross-validation type procedure to select sample size. In the above problem the criterion function is showed in Figure 9, $\frac{n_2}{n_1} = 9.21\%$. In the data range, the sample size of public equity funds is 10090, we chose about 10% of the smallest sample size. We also note from the plot of criteria function and its values, a sample size of 2250 or one-fourth (22.3%) the size of the estimation sample also gives a reasonably small value of the criteria function. Any sample size of the range between 9.21\% and 22.3\% provides a reasonable maximal sample size for the correct nominal size of the test. Since our sample size for the private equity return is smaller than this range we would select the entire private equity sample.